K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2015

6^2n+ 3^(n+2)+ 3^n = 6^2n + 3^n x 3^2+ 3^n = 6^2n + 3^n x 9 + 3^n = 6^2n + 3^n x 10 
6^2n + 3^n x 10 dd 6^2n + 3^n x (-1) dd 3^n x ( 3^n x 2^2n) - 3^n dd 3^n x (3^n x 4^n -1)( mod 11) 
(3^n x 4^n -1) dd 12^n -1 dd 1^n - 1 dd 0 
=>6^2n + 3^(n+2)+ 3^n dd 0(mod 11) 
=> dpcm 

7 tháng 11 2016

Ta có : n+13=(n-5) + 8

Suy ra :(n-5) + 8 chia hết cho n-5

Ta có : ( n-5 ) chia hết cho n-5 mà (n-5 ) + 8 chia hết cho n-5 . Vậy 8 chia hết cho n-5 

Suy ra : n-5 thuộc Ư ( 8 )

Suy ra : n-5 thuộc { 1 ;2;4;8}

Suy ra : n thuộc {6;7;9;13}

7 tháng 11 2016

2 ) ta có : n+3 chia hết n

Mà ta có n chia hết cho n mà n+3 chia hết cho n . Vậy 3 chia hết cho n 

Suy ra: n thuộc Ư (3)

Suy ra : n thuộc { 1 ;3 }

30 tháng 6 2017

Trần Thị Thùy Dung tham khảo đây nha:

Câu hỏi của Cute Baby so good - Toán lớp 6 - Học toán với OnlineMath

............

s5.jpg
Trần Thị Thùy Dung
17 tháng 1 2016

b.2n-4 chia hết cho n+2<=>2n+4-8 chia hết cho n+2

                                 <=>2(n+2)-8 chia het cho n+2

                                 <=>8 chia hết cho n+2

                                 <=> n+2 thuộc ước của 8

  còn lại tự tính nha

những câu hỏi khác cũng tương tự

tick nha

11 tháng 10 2015

Ta có :

A = 13! - 11! = 11! . 12 . 13 - 11! = 11! . (12 . 13 - 1) = 11! . 155 chia hết cho 155

15 tháng 7 2015

Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.

2 tháng 2 2019

cậu nên đăng lần lượt thôi thì bọn tớ mới làm

17 tháng 7 2018

a) \(\left(5n+7\right)\left(4n+6\right)\)

\(=\left(5n+7\right)4n+\left(5n+7\right)6\)

\(=20n^2+28n+30n+32\)

\(=20n^2+58n+32\)

\(20n^2⋮2\) ; \(58n⋮2\) ; \(32⋮2\) nên \(\left(5n+7\right)\left(4n+6\right)⋮2\)

b) \(\left(8n+1\right)\left(6n+5\right)\)

\(=\left(8n+1\right)6n+\left(8n+1\right)5\)

\(=48n^2+6n+40n+5\)

\(=48n^2+46n+5\)

\(\left(48n^2+46n\right)⋮2\)\(5⋮̸2\) nên \(\left(8n+1\right)\left(6n+5\right)⋮̸2\)

c) \(n\left(n+1\right)\left(2n+1\right)\)

\(=n\left(n+1\right)\left(n-1+n-2\right)\)

\(=n\left(n-1\right)\left(n+1\right)+n\left(n+1\right)\left(n+2\right)\)

Với \(\forall n\in N\), tích 3 số tự nhiên liên tiếp chia hết cho 6 nên \(n\left(n-1\right)\left(n+1\right)⋮6\)\(n\left(n+1\right)\left(n+2\right)⋮6\)

Vậy \(n\left(n+1\right)\left(2n+1\right)⋮6\)