Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tham khảo bài tương tự nhé !
Ta đặt biểu thức trên là S
Ta có S = 3 x (1 + 3^2 + 3^4 + 3^6 + ... + 3^1990) = 3 x P
Chứng mình S chia hết cho 13 và 41 tương đưong với chứng mình P chia hết cho 13 và 41
P có 996 số hạng
Nhóm P thành từng bộ 3 số hạng
P = 1 + 3^2 + 3^4 + 3^6 + ... + 3^1990
= (1 + 3^2 + 3^4) + 3^6 x (1 + 3^2 + 3^4) + ... + 3^1986 x (1 + 3^2 + 3^4)
= (1 + 3^2 + 3^4) x (1 + 3^6 + 3^12 + ... + 3^1986)
= 91 x (1 + 3^6 + .... + 3^1986)
Do 91 chia hết cho 13 nên P cũng chia hết cho 13
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
P = (1 + 3^2 + 3^4 + 3^6) x (1 + 3^8 + 3^16 + ... + 3^1984)
= 820 x (1 + 3^8 + 3^16 + ... + 3^1984)
Do 820 chia hết cho 41 nên P cũng chia hết cho 41
*(a^n-1)=(a-1)(1+a+a^2+..+a^(n-1))
=>1+a+a^2+...+a^(n-1)=(a^n-1)/(a-1)
*a^(n.m)=(a^n)^m.
Ta có:
S=3+3^3+...+3^1991=
=3(1+3^2+3^4+...+3^1990)
=3(1+9+9^2+...+9^995)
=3(9^996-1)/8
=3P/8.
với P=9^996-1.
vì 13 và 8 là 2 số ngyuên tố cùng nhau, tương tự 41 và 8 là 2 số nguyên tố cùng nhau, nên ta chỉ cần cm P cha hết cho 13 và 41.
a) ta có:
P=9^996-1=
=(3^2)^996-1
=3^1992-1
=(3^3)^664-1
=27^664-1
=(27-1)(1+27^2+...+27^663)
=26(1+27^2+..+27^663)
mà 26 chia hết cho 13, nên P chia hết cho 13.
b)ta lại có:
P=9^996-1=
=(9^4)^249-1
=6561^249-1
=(6561-1)(1+...+6561^248)
=6560(1+6561+...+6561^248)
thấy 6560 chia hết cho 41 nên P chia hết cho 41.
Với cách này ta còn cm được S chia hết cho rất nhiều số khác nữa.
=(5+5^3+5^5)+...+5^199+5^201+5^203)=
5*(1+5^2+5^4)+...+5^199*(1+5^2+5^4)=
5*651+...+5^199*631=
631*(5+5+5+...+5)=
31*21*(5+5+...+5) chia hết cho 31
B = ( 5+ 5^3+ 5^5 ) + ( 5^7+ 5^9+ 5^11) + ...+ ( 5^199+ 5^201+ 5^203)
B = 5 x ( 1+ 5^2+ 5^4 ) + 5^7 x ( 1+ 5^2+ 5^4)+...+ 5^199 x ( 1+5^2+ 5^4 )
B = 5 x 651 + 5^7 x 651 +...+ 5^199 x 651
Mà 651 chia hết cho 31 nên B chia hết cho 31
Ta có: \(B=5+5^3+5^5+5^7+5^9+5^{11}+...+5^{199}+5^{201}+5^{203}\)
\(\Rightarrow B=\left(5+5^3+5^5\right)+\left(5^7+5^9+5^{11}\right)+...+\left(5^{199}+5^{201}+5^{203}\right)\)
\(\Rightarrow B=5\left(1+5^2+5^4\right)+5^7\left(1+5^2+5^4\right)+...+5^{199}\left(1+5^2+5^4\right)\)
\(\Rightarrow B=\left(1+5^2+5^4\right)\left(5+5^7+...+5^{199}\right)\)
\(\Rightarrow B=651\left(5+5^7+...+5^{199}\right)\)
\(\Rightarrow B=31.21.\left(5+5^7+...+5^{199}\right)\)
Vì \(\left[31.21\left(5+5^7+...+5^{199}\right)\right]⋮31\)
Vậy \(B⋮31\)
Có : 5+5^3+5^5+....+5^203
= (5+5^3+5^5) + (5^7+5^9+5^11)+....+(5^199+5^201+5^203)
= 5.(1+5^2+5^4)+5^7.(1+5^2+5^4)+....+5^199.(1+5^2+5^4)
= 5.651 + 5^7.651 + .... + 5^199.651
= 651 .(5+5^7+....+5^199) chia hết cho 651
Mà 651 chia hết cho 21
=> 5+5^3+5^5+....+5^203 chia hết cho 21 (ĐPCM)
k mk nha
a) A= (2+22)+(23+24)+........(259+260)
= 1(2+22) + 22(2+22) + ....... 258(2+22)
= 1.6 + 22.6 +......... 258.6
=6(1+22+.......258)
Vì 6 chia hết cho 3 nên => 6(1+22+........258)
Các câu còn lại cũng tương tự như vậy nha bn!
De thay B co 996 so hang
Ta co: 3+3^3+3^5+...+3^1991
= (3+3^3+3^5)+...+(3^1987+1989+1991)
=3.(1+3^2+3^4)+...+3^1987.(1+3^2+3^4)
=3.91+...+3^1987.91
=(3+..+3^1987).91=(3+...+3^1987).13.7 chia het cho 13
3+3^3+3^5+...+3^1991
=(3+3^3+3^5+3^7)+...+(3^1985+3^1987+3^1989+3^1991)
=3(1+3^2+3^4+3^6)+...+3^1985.(1+3^2+3^4+3^6)
=3.820+...+3^1985.820=(3+...+3^1985).820=(3+....+3^1985).41.20 chia het cho 41
chưng tỏ B:13
B=3+33+35+...+31991:13
B=3. (1+9+81)+37.(1+9+81)+...+31989.(1+9+81):13
B=91.(3+37+313+...+31989):13
vì 91:13=>B:13
vậy B:13
chưng tỏ B:41
B=3+33+35+...+31991:41
B=3.(1+9+81+729)+39.(1+9+81+729)+...+31988.(1+9+81+729):41
B=820.(3+39+317+...+31988):41
vì 820:41=>B:41
vậy B:41
a. A=1+4+42+43+...+458+459 chia hết cho 5,21 và 85
A=(1+4)(4^2+4^3)...........(4^58+4^59):5
A=(1+4)4^2(1+4)............4^58(1+4)
A=5.4^2.5.............4^58.5 chia hết cho 5
chia hết cho 21 85 và 31 cũng tương tự chỉ thế số thôi
Giải
Đặt biểu thức trên = K
Nhóm P thành từng bộ 4 số hạng và làm tương tự ta cũng có:
\(K=\left(1+3^2+3^4+3^6\right).\left(1+3^8+3^{16}+...+3^{1984}\right)\)
\(=820.\left(1+3^8+3^{16}+...+3^{1984}\right)\)
Do 820 \(⋮\) 41 nên P cũng \(⋮\) 41