K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2015

Ta có: \(17^{19}+19^{17}=\left(17^{19}+1\right)+\left(19^{17}-1\right)\)

Mà \(17^{19}+1\)chia hết cho \(17+1=18\)

và \(19^{17}-1\)chia hết cho \(19-1=18\)

nên  \(\left(17^{19}+1\right)+\left(19^{17}-1\right)\)chia hết cho  \(18\)

Do đó, \(17^{19}+19^{17}\)chia hết cho  \(18\)

23 tháng 8 2016

c) 17^19 + 19^17 = (17^19 + 1) + (19^17
- 1) 
17^19 + 1 chia hết cho 17 + 1 = 18 và 19^17
- 1 chia hết cho 19 - 1 = 18 nên (17^19 + 1) + (19^17
- 1) 
hay 17^19 + 19^17 chia hết cho 18

22 tháng 11 2016

a) Có: \(2^3=8\equiv1\left(mod7\right)\Rightarrow2^{51}\equiv1\left(mod7\right)\)

\(\Rightarrow2^{51}-1⋮7\left(đpcm\right)\)

b) 270 + 370 = (22)35 + (32)35 = 435 + 935

\(=\left(4+9\right).\left(4^{34}-4^{33}.9+....-4.9^{33}+9^{34}\right)\)

\(=13.\left(4^{34}-4^{33}.9+...-4.9^{33}+9^{34}\right)⋮13\left(đpcm\right)\)

 

22 tháng 11 2016

t chỉ lm 2 câu đại diện, c` lại tương tự

phần a sai đề nha bạn 

b,Ta có

      \(2\equiv2\left(mod13\right)\)

\(\Rightarrow2^{12}\equiv1\left(mod13\right)\)

\(\Rightarrow2^{12.5}.2^{10}\equiv1.2^{10}\left(mod13\right)\)

\(\Rightarrow2^{60}.2^{10}\equiv1024\left(mod13\right)\)

\(\Rightarrow2^{70}\equiv10\left(mod13\right)\)\(\left(1\right)\)

Lại có:

\(3\equiv3\left(mod13\right)\)

\(\Rightarrow3^6\equiv1\left(mod13\right)\)

\(\Rightarrow3^{6.11}.3^4\equiv1.3^4\left(mod13\right)\)

\(\Rightarrow3^{66}.3^4\equiv81\left(mod13\right)\)

\(\Rightarrow3^{70}\equiv3\left(mod13\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow2^{70}+3^{70}\equiv13\equiv0\left(mod13\right)\)

c, Ta có

\(17\equiv-1\left(mod18\right)\)

\(\Rightarrow17^{19}\equiv-1\left(mod18\right)\)\(\left(1\right)\)

Lại có

\(19\equiv1\left(mod18\right)\)

\(\Rightarrow19^{17}\equiv1\left(mod18\right)\)\(\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow17^{19}+19^{17}\equiv0\left(mod18\right)\)

\(\Rightarrow17^{19}+19^{17}⋮18\)

9 tháng 11 2017

a) 85+211

=(23)5+211=215+211

=211(24+1)

=211.17 (chia hết cho 17 )            

Vậy 85+211 chia hết cho 17

b)Ta có a^n + b^n

=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ 
19^19 + 69^19

= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18) 
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44

31 tháng 7 2017

Phải có \(n\in N\)nữa nha.

\(A=\left(20^n-3^n\right)+\left(16^n-1\right)\)

\(B=20^n-3^n⋮20-3=17\)(n là số tự nhiên bất kì)

\(C=16^n-1^n⋮16+1=17\)(n là số tự nhiên chẵn)

\(\Rightarrow A=B+C⋮17\)(1)

\(A=\left(20^n-1\right)+\left(16^n-3^n\right)\)

\(D=20^n-1^n⋮20-1=19\)(n là số tự nhiên bất kì)

\(E=16^n-3^n⋮16+3=19\)(n là số tự nhiên chẵn)

\(\Rightarrow A=D+E⋮19\)(2)

Từ (1), (2) \(\Rightarrow A⋮17;19\)

Vậy \(20^n+16^n-3^n-1⋮17;19\)

Chúc bạn học tốt.

27 tháng 6 2019

62n + 19n - 2n+1

=62n + 19n - 2.2n
= (36n - 2n )+ (19n - 2n)
Mà: 36n - 2n =(36-2).... (nhân vs 1 số dương)

19n - 2n = (19-2).....(nhân vs 1 số dương)
\(\Rightarrow\) 36n - 2n \(⋮\) 36 - 2 = 34 = 2.17

19n - 2n\(⋮\) 19-2=17

Vậy: 62n + 19n - 2n+1 =(36n - 2n )+ (19n - 2n)\(⋮\) 17 (đpcm)

1 tháng 7 2019

? nhân với 1 số dương

29 tháng 7 2017

1vua72??? là sao

29 tháng 7 2017

20n+16n-3n-1 vừa chia hết cho 17, 19