Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tk mình đi mọi người mình bị âm nè!
Ai tk mình mình tk lại cho
Bài làm
Ta có: \(S=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{200^2}\)
\(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{200.200}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{199.200}\)( nếu k hiểu đoạn này, mình sẽ giải thích )
Biển đổi vế trái, ta có:
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{199}-\frac{1}{200}\)
\(=\frac{1}{1}-\frac{1}{200}\)
\(=\frac{200}{200}-\frac{1}{200}=\frac{1}{200}\)
Mà \(\frac{1}{2}=\frac{100}{200}\)
=> \(\frac{1}{200}< \frac{1}{2}\)
Và \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{200.200}< \frac{1}{200}\)
=> \(S=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+\frac{1}{5.5}+...+\frac{1}{200.200}< \frac{1}{2}\)( đpcm )
# Học tốt #
\(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{198\cdot199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{198}-\frac{1}{199}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{199}\Rightarrow A< \frac{1}{3}\left(ĐPCM\right)\)
A < 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 90x 1
16 36 64 100 144 196 256 324 400 484
A < 698249 + 45
5080320 242
A < 197445329 < 1
607458720 3
=> A < 1
3
\(M=\frac{1}{2!}+\frac{1}{3!}+...+\frac{1}{200!}< \frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{199.200}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{199}-\frac{1}{200}=1-\frac{1}{200}< 1\)
Vậy M < 1
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{200^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(=1-\frac{1}{200}\)
\(=\frac{199}{200}\)
vậy \(\frac{99}{200}< \frac{199}{200}< 1\left(đpcm\right)\)
gọi tổng đó là A
A<1/2^2 + 1/2.3+1/3.4+1/4.5...+1/199.200
A<1/2^2 + 1/2-1/3+1/3-1/4+1/4-1/5+...+1/199-1/200
A<1/2^2+1/2-1/200
A<3/4-1/200<3/4 (đpcm
để so sánh A> hơn 1/2 thì mình so sánh theo cách:
A=1/2^2+1/3^2+....+1/200^2>1/2^2+1/2^2=1/2
vậy cần so sánh 1/3^2+....+1/200^2 với 1/2^2
1/3^2+1/4^2+....+1/200^2 > 1/3.4+1/4.5+1/5.6+...+1/200.201=1/3-1/4+1/4-1/5+1/5-1/6+...+1/200-1/201=1/3-1/201=66/201>66/266=1/4
vậy là chứng minh xong