Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A = 10n +18n -1 = (10n-1)+18n = 999...9 +18n (n chữ số 9)
= 9(1111...111 +2n)chia hết cho 9 (n chữ số 1)
Đặt B = 111...111+2n = 111...111 - n +3n
Tổng các chữ số của 111...111 là n
=> B=111...111 - n +3n chia hết cho 3
=> A chia hết cho 3
Vì (3,9)=1 => A chia hết cho 27
a)10^n+18n-1=10^n-1+18n=999....99(n chu so 9)+18n
=9.(111...11(n chu so 9)+2n)
Xet 111...11(n chu so 9)+2n=111..11-n+3n
De thay tong cac chu so cua 111....11(n chu so 1) la n
=>111...11-n chia het cho 3
=>111...11-n+3n chia het cho 3
=>10^n+18n-1 chia het cho 27
Ta có: 10^n + 18n - 1 = (10^n - 1) + 18n = 99...9 + 18n (số 99...9 có n chữ số 9)
= 9(11...1 + 2n) (số 11...1 có n chữ số 1) = 9.A
Xét biểu thức trong ngoặc A = 11...1 + 2n = 11...1 - n + 3n (số 11...1 có n chữ số 1).
Ta đã biết một số tự nhiên và tổng các chữ số của nó sẽ có cùng số dư trong phép chia cho 3. Số 11...1 (n chữ số 1) có tổng các chữ số là 1 + 1 + ... + 1 = n (vì có n chữ số 1).
=> 11...1 (n chữ số 1) và n có cùng số dư trong phép chia cho 3 => 11...1 (n chữ số 1) - n chia hết cho 3 => A chia hết cho 3 => 9.A chia hết cho 27 hay 10^n + 18n - 1 chia hết cho 27 (đpcm)
a) 10n + 18n - 1 = (10n - 1) + 18n = 99...9 + 27n - 9n ( Số 99...9 có n chữ số 9)
= (99...9 - 9n) + 27n = 9.(11...1 - n) + 27n ( có n chữ số 1)
Nhận xét: Số 11...1 có tổng các chữ số bằng 1 + 1...+ 1 = n
Mà ta có: Số tự nhiên và tổng các chữ số của nó có cùng số dư khi chia cho 3 => 11...1 và n có cùng số dư khi chia cho 3
=> 11...1 - n chia hết cho 3 => 9.(11...1 - n) chia hết cho 9.3 = 27
Ta có: 27n chia hết cho 27 nên 9.(11...1 - n) + 27n ( có n chữ số 1) chia hết cho 27
Vậy 10n + 18n - 1 chia hết cho 27
b) Tương tự câu a)
bài này áp dụng phương pháp quy nạp 2 lần.
.................................
chọn n=1 => 10+18-1=27 chia hết cho 27 (luôn đúng)
giả sử với mọi n=k (k thuộc N*) thì ta luôn có 10^k+18k-1 chia hết cho 27.
Cần chứng minh với n=k+1 thì 10^(k+1)+18(k+1)-1 chia hết cho 27.
Ta có 10^(k+1)+18(k+1)-1= 10*10^k+18k+18-1
= (10^k+18k-1)+9*10^k+18
= (10^k+18k-1)+9(10^k+2)
ta có: (10^k+18k-1) chia hết cho 27 => 10^(k+1)+18(k+1)-1 chia hết cho 27 khi và chỉ khi 9(10^k+2) chia hết cho 27.
Chứng minh 9(10^k+2) chia hết cho 27.
chọn k=1 => 9(10+2)=108 chia hết cho 27(luôn đúng)
giả sử k=m(với m thuộc N*) ta luôn có 9(10^m+2) chia hết cho 27.
ta cần chứng minh với mọi k= m+1 ta có 9(10^(m+1)+2) chia hết cho 27.
thật vậy ta có: 9(10^(m+1)+2)= 9( 10*10^m+2)= 9( 10^m+9*10^m+2)
= 9(10^m+2) +81*10^m
ta có 9(10^m+2) chia hết cho 27 và 81*10^m chia hết cho 27 => 9(10^(m+1)+2) chia hết cho 27
=>9(10^k+2) chia hết cho 27
=>10^(k+1)+18(k+1)-1 chia hết cho 27
=>10^n+18n-1 chia hết cho 27=> đpcm
a,\(10^n+18n-1\)
\(=99...9+18n\)(n-1 chữ số 9)
Mà \(99..9⋮9;18n⋮9\)lại có \(999..9⋮3;18n⋮3\)
\(\Rightarrow999..9+18n⋮\left(3.9\right)\)
\(\Rightarrow10^n+18n-1⋮27\)
mình biết nội quy rồi nên đưng đăng nội quy
ai chơi bang bang 2 kết bạn với mình
mình có nick có 54k vàng đang góp mua pika
ai kết bạn mình cho
1033 + 8 có tận cùng là 8 => 1033 + 8 chia hết cho 2
1033 + 8 có tổng các chữ số là 9 => 1033 + 8 chia hết cho 9
1010 + 14 có tận cùng là 4 => 1010 + 14 chia hết cho 2
1010 + 14 có tổng các chữ số là 15 => 1010 + 14 chia hết cho 3