K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2017

\(\frac{1}{\sqrt{2}}=\frac{2}{2\sqrt{2}}< \frac{2}{\sqrt{2}+\sqrt{1}}=\frac{2\left(\sqrt{2}-1\right)}{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}=2\left(\sqrt{2}-1\right)\)

\(\frac{1}{\sqrt{3}}=\frac{2}{2\sqrt{3}}< \frac{2}{\sqrt{3}+\sqrt{2}}=\frac{2\left(\sqrt{3}-\sqrt{2}\right)}{\left(\sqrt{3}+\sqrt{2}\right)\left(\sqrt{3}-\sqrt{2}\right)}=2\left(\sqrt{3}-\sqrt{2}\right)\)

.

.

.

\(\frac{1}{\sqrt{225}}=\frac{2}{2\sqrt{225}}< \frac{2}{\sqrt{225}+\sqrt{224}}=\frac{2\left(\sqrt{225}-\sqrt{224}\right)}{\left(\sqrt{225}+\sqrt{224}\right)\left(\sqrt{225}-\sqrt{224}\right)}\)\(=2\left(\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\right)\)

\(\Rightarrow\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...+\frac{1}{\sqrt{225}}< 2\left(\sqrt{225}-1\right)=2\left(15-1\right)=28\)

31 tháng 5 2019

vế phải < \(2.\left(\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}+...+\frac{1}{2\sqrt{225}}\right)\)

<\(2\left(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+...+\frac{1}{\sqrt{224}+\sqrt{225}}\right)\)

\( =2.\left(-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-...-\sqrt{224}+\sqrt{225}\right)\)

=\(2.\left(-1+\sqrt{225}\right)=2.14=28\)

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

3 tháng 9 2017

Ta có: \(M=\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{224}+\sqrt{225}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{225}-\sqrt{224}\)

\(=-1+\sqrt{225}=-1+15=14\)

Và \(N=\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+...+\frac{1}{\sqrt{63}}\)

\(=14,47706...>14=M\)