K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 10 2018

\(\left(2n+3\right)^2-9=\left(2n+3\right)^2-3^2=\left(2n+3-3\right)\left(2n+3+3\right)=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4\right)^2-4^2=\left(3n+4-4\right)\left(3n+4+4\right)=3n\left(3n+8\right)⋮3\)

10 tháng 10 2018

a) ta có: (2n+3)2 - 9

= 4n2 +12n + 9 - 9

= 4n.(n+3) chia hết cho 4

=> ...

b) ta có: (3n+4)2 - 16

= 9n2 + 24n + 16 - 16

= 3n.(3n + 8)  chia hết cho 3

=> ...

17 tháng 8 2015

A=9n^2+24n+16-16=3(3n^2+8n) chia hết cho 3 vì n thuộc N

3 tháng 1 2017

đề sai : đề thật nè  Chứng minh rằng m^3+20m chia hết cho 48 

  m = 2k thì 
(2k)^3 + 20*2k = 8k^3 + 40k = 8k(k^2 + 5) 
Cần chứng minh k(k^2 + 5) chia hết cho 6 là xong. 
+ nếu k chẵn => k(k^2 + 5) chia hết cho 2 
+ nếu k lẻ => k^2 lẻ => k^2 + 5 chẵn => k(k^2 + 5) chia hết cho 2 
Vậy k(k^2 + 5) chia hết cho 2 
+ nếu k chia hết cho 3 => k(k^2 + 5) chia hết cho 3 
+ nếu k chia 3 dư 1 => k^2 + 5 = (3l + 1)^2 + 5 = 9l^2 + 6l + 6 chia hết cho 3 
+ nếu k chia 3 dư 2 => k^2 + 5 = (3l + 2)^2 + 5 = 9l^2 + 12l + 9 chia hết cho 3 
Vậy k(k^2 + 5) chia hết cho 3 
=>dpcm

tk nha bạn

thank you bạn

(^_^)

3 tháng 1 2017

Lập luận quá sắc nét bái phục

3 tháng 8 2016

\(\frac{a}{3}+\frac{a^2}{2}+\frac{a^3}{6}=\frac{2a}{6}+\frac{3a^2}{6}+\frac{a^3}{6}=\frac{2a+3a^2+a^3}{6}\)

\(=\frac{a^3+3a^2+2a}{6}=\frac{a^3+2a^2+a^2+2a}{6}\)

\(=\frac{a^2.\left(a+2\right)+a.\left(a+2\right)}{6}=\frac{\left(a+2\right).\left(a^2+a\right)}{6}=\frac{\left(a+2\right).a.\left(a+1\right)}{6}\)

Vì a.(a+1).(a+2) là tích 3 số nguyên liên tiếp nên chia hết cho 2 và ;mà (2;3)=1

=>a.(a+1).(a+2) chia hết cho 6

\(=>\frac{a.\left(a+1\right).\left(a+2\right)}{6}\in Z\left(a\in Z\right)\) (đpcm)

2 tháng 7 2019

ta có : n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)n(n+5)−(n−3)(n+2)=n2+5n−(n2+2n−3n−6)

=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6=n2+5n−n2−2n+3n+6=6n+6=6(n+1)⋮6

⇔6(n+1)⇔6(n+1) chia hết cho 66 với mọi n là số nguyên

⇔n(n+5)−(n−3)(n+2)⇔n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên

vậy n(n+5)−(n−3)(n+2)n(n+5)−(n−3)(n+2) chia hết cho 66 với mọi n là số nguyên (đpcm)

28 tháng 8 2018

a) Ta có:

\(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)

\(-5n⋮5\) với n thuộc Z

\(\Rightarrow n\left(2n-3\right)-2n\left(n+1\right)⋮5\) với n thuộc Z

b) Ta có:

\(\left(n^2+3n-1\right)\left(n+2\right)-n^3+2\)

\(=n^3+3n^2-n+2n^2+6n-2-n^3+2\)

\(=5n^2+5n\)

\(=5\left(n^2+n\right)\)

\(5\left(n^2+n\right)⋮5\)

\(\Rightarrow\left(n^2+3n-1\right)\left(n+2\right)-n^3+2⋮5\)

c) Ta có:

\(\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1-2\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)\)

\(=\left(xy+1\right)\left(x^{2003}+y^{2003}-x^{2003}+y^{2003}\right)-2\left(x^{2003}+y^{2003}\right)\)

\(=2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)\)

\(2\left(xy+1\right)y^{2003}⋮2\)

\(2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow2\left(xy+1\right)y^{2003}-2\left(x^{2003}+y^{2003}\right)⋮2\)

\(\Rightarrow\left(xy-1\right)\left(x^{2003}+y^{2003}\right)-\left(xy+1\right)\left(x^{2003}-y^{2003}\right)⋮2\)

2 tháng 10 2016

xem lại đề

2 tháng 10 2016

đề kiểu gì vậy bạn (1+2+3+...+n)^2 còn có chút hợp lí

7 tháng 9 2020

1. a là số tự nhiên chia 5 dư 1

=> a = 5k + 1 ( k thuộc N )

b là số tự nhiên chia 5 dư 4

=> b = 5k + 4 ( k thuộc N )

Ta có ( b - a )( b + a ) = b2 - a2

                                   = ( 5k + 4 )2 - ( 5k + 1 )2

                                   = 25k2 + 40k + 16 - ( 25k2 + 10k + 1 )

                                   = 25k2 + 40k + 16 - 25k2 - 10k - 1

                                   = 30k + 15

                                   = 15( 2k + 1 ) chia hết cho 5 ( đpcm )

2. 2n2( n + 1 ) - 2n( n2 + n - 3 )

= 2n3 + 2n2 - 2n3 - 2n2 + 6n

= 6n chia hết cho 6 ∀ n ∈ Z ( đpcm )

3. n( 3 - 2n ) - ( n - 1 )( 1 + 4n ) - 1

= 3n - 2n2 - ( 4n2 - 3n - 1 ) - 1

= 3n - 2n2 - 4n2 + 3n + 1 - 1

= -6n2 + 6n

= -6n( n - 1 ) chia hết cho 6 ∀ n ∈ Z ( đpcm )