\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2018

Ta sẽ biến đổi vế phải:

\(a^3+b^3+3ab\left(a+b\right)\)

\(=a^3+3a^2.b+3ab^2+b^3+3a^{2b}+3ab^2\)

\(=a^3+b^3\)

Vậy VT = VP đẳng thức được chứng minh

5 tháng 8 2020

Minecraft 1.15 

18 tháng 7 2016

ban su dung hang dang thuc la ra

26 tháng 6 2018

b)  \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Biến đổi VT ta có :

+) \(a^3+b^3+c^3=ab+bc+ca\)

\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)

\(\Rightarrow a=b=c\)

< => VT = VP 

=> đpcm

26 tháng 6 2018

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

                                                              \(=a^3+b^3=VT\)

2 tháng 10 2017

C/M:

a)a^3+b^3=(a+b)^3-3a*b*(a+b)

VP=a^3+3*a^2*b+3*a*b^2+b^3-3*a^2*b-3*a*b^2

=a^3+b^3

Thay:a*b=6 và a+b=-5

Ta có:a^3+b^3=(a+b)*(a^2*a*b*b^2) =-5*(a^2*6*b^2)

Mà:a*b=6 nên a2*b2=62=36

Suy ra: =-5*(36*6)=-1080

Tương tự như câu a) làm câu b).Chúc bạn làm được câu b)thanghoa.

2 tháng 10 2017

Mình không biết làm đúng hay sai nhan.Nhưng bạn cứ chép đáp án vào.hehe

 Châu ơi!đăng làm j z

20 tháng 4 2017

a) a3 + b3 = (a + b)3 – 3ab(a + b)

Thực hiện vế phải:

(a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

Thực hiện vế phải:

(a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.



27 tháng 6 2017

a) Ta có : a3 + b3 = (a + b)3 – 3ab(a + b)

=> VP = (a + b)3 – 3ab(a + b) = a3 + 3a2b+ 3ab2 + b3 – 3a2b – 3ab2

= a3 + b3

Vậy a3 + b3 = (a + b)3 – 3ab(a + b)

b) a3 – b3 = (a – b)3 + 3ab(a – b)

=> VP = (a – b)3 + 3ab(a – b) = a3 - 3a2b+ 3ab2 - b3 + 3a2b – 3ab2

= a3 – b3

Vậy a3 – b3 = (a – b)3 + 3ab(a – b)

Áp dụng:

Với ab = 6, a + b = -5, ta được:

a3 + b3 = (a + b)3 – 3ab(a + b) = (-5)3 - 3 . 6 . (-5)

= -53 + 3 . 6 . 5 = -125 + 90 = -35.


3 tháng 7 2018

Ta có : \(\left(a+b\right)^3=a^3+3a^2b+3ab^2+b^3\)

\(=a^3+\left(3a^2b+3ab^2\right)+b^3\)

\(=a^3+3ab\left(a+b\right)+b^3\)

\(=a^3+b^3+3ab\left(a+b\right)\)

Vậy \(\left(a+b\right)^3\)\(=a^3+b^3+3ab\left(a+b\right)\)(đpcm)

3 tháng 7 2018

Cách khác :

\(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)

\(\Leftrightarrow a^3+3a^2b+3ab^2+b^2-a^3-b^3-3a^2b-3ab^2=0\)

\(\Leftrightarrow0=0\left(luôn-đúng\right)\)

\(\Rightarrowđpcm\)

3 tháng 7 2018

Ta có : \(VP=a^3-b^3-3ab\left(a-b\right)=a^3-b^3-3a^2b+3ab^2=\left(a-b\right)^3\)

=> \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\)

Vậy \(\left(a-b\right)^3=a^3-b^3-3ab\left(a-b\right)\).

3 tháng 7 2018

Biến đổi vế trái:

\(\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(\Leftrightarrow a^3-3a^2b+3ab^2-b^3=a^3-b^3-3ab\left(a-b\right)\)

Vậy VT = VP đẳng thức chứng minh

3 tháng 7 2018

Biến đổi vế trái ta có:

\(VT=\left(a-b\right)^3=a^3-3a^2b+3ab^2-b^3\)

\(VT=a^3-b^3-3ab.\left(a-b\right)=VP\) 

                                                      đpcm