K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3⋮9\)   (1)

\(A=n^3+\left(n^3+3n^2+3n+1\right)+\left(n^3+6n^2+12n+8\right)\)

\(A=3n^3+9n^2+15n+9\)

\(=3\left(n^3+3n^2+5n+3\right)\)

Đặt  \(B=n^3+3n^2+5n+3\)

\(=n^3+n^2+2n^2+2n+3n+3\)

\(=n^2\left(n+1\right)+2n\left(n+1\right)+3\left(n+1\right)=\left(n+1\right)\left(n^2+2n+3\right)\)

\(=\left(n^2+2n\right)\left(n+1\right)+3\left(n+1\right)\)

\(=n\left(n+1\right)\left(n+2\right)+3\left(n+1\right)\)

Ta thấy \(n\left(n+1\right)\left(n+2\right)⋮3\)   ( tích 3 số tự nhiên liên tiếp )

\(\Rightarrow3\left(n+1\right)⋮3\)

\(\Rightarrow B⋮3\)

\(\Rightarrow B=3k\left(k\in N\right)\)

Vậy  \(A=3B=3.3k=9k⋮9\left(dpcm\right)\)

14 tháng 1 2017

\(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2\)(*)

Với \(n=1;n=2\) (*) đúng

Giả sử (*) đúng với n=k khi đó (*) thành

\(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Thật vậy giả sử (*) đúng với n=k+1 khi đó (*) thành

\(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\left(1\right)\)

Cần chứng minh (1) đúng, mặt khác ta lại có

\(\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2=\frac{\left(n^2+n\right)^2}{4}\)

Đẳng thức cần chứng minh tương đương với

\(\frac{\left(k^2+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

\(\Leftrightarrow4\left(k+1\right)^3=4\left(k+1\right)^3\)

Theo nguyên lý quy nạp ta có đpcm

Vậy \(1^3+2^3+...+n^3=\left(1+2+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

13 tháng 1 2017

Ta có : \(1^3+2^3+3^3+....+n^3\)

=\(\left(1+2+3+4+...+n\right)^2\)

=\(\left(\frac{n\left(n+1\right)}{2}\right)^2\) (đpcm)

19 tháng 10 2017

Ta đã có: \(n\in N\)*

Chứng minh theo phương pháp quy nạp toán học:

Với \(n=1\) thì \(A=1^3+2^3+3^3=36⋮9\)

Giả sử mệnh đề đúng với \(n=k\)(giả thiết quy nạp) thì ta chứng minh mệnh đề cũng đúng với \(n=k+1\)

Với \(n=k+1\Rightarrow A=\left(k+1\right)^3+\left(k+2\right)^3+\left(k+3\right)^3\)

\(=(k^3+3k^2+3k+1+k^3+6k^2+12k+1+k^3)+9k^2+27k+27\)\(=k^3+\left(k+1\right)^3+\left(k+2\right)^3+9\left(k^2+3k+3\right)\)

Ta có: \(k^3+\left(k+1\right)^3+\left(k+2\right)^3⋮9\) hiên nhiên \(9\left(k^2+3k+3\right)⋮9\)

Từ đó suy ra A chia hết cho 9 (n \(\in N\)*)

18 tháng 6 2019

\(a,\left(2x-3\right)n-2n\left(n+2\right)\)

\(=n\left(2x-3-2n-4\right)\)

\(=-7n\)

\(-7⋮7\Rightarrow-7n⋮7\) => ĐPCM

\(b,n\left(2n-3\right)-2n\left(n+1\right)\)

\(=n\left(2n-3-2n-2\right)\)

\(=-5n⋮5\) (ĐPCM)

Rút gọn

\(a,\left(3x-5\right)\left(2x+11\right)-\left(2x+3\right)\left(3x+7\right)\)

\(=6x^2+33x-10x-55-6x^2-14x-9x-21\)

\(=-76\)

\(b,\left(x+2\right)\left(2x^2-3x+4\right)-\left(x^2-1\right)\left(2x+1\right)\)

\(=2x^3-3x^2+4x+4x^2-6x+8-2x^3-x^2+2x+1\)

\(=9\)

\(c,3x^2\left(x^2+2\right)+4x\left(x^2-1\right)-\left(x^2+2x+3\right)\left(3x^2-2x+1\right)\)

\(=3x^4+6x^2+4x^3-4x-3x^4+2x^3-x^2-6x^3+4x^2-2x-9x^2+6x-3\)

= -3

9 tháng 11 2017

khai triển ra, ta dc:
25^n+5^n-18^n-12^n (1)
=(25^n-18^n)-(12^n-5^n)
=(25-18)K-(12-5)H = 7(K-H) chia hết cho 7
.giải thích: 25^n-18^n=(25-18)[25^(n-1)+ 25^(n-2).18^1 +.....+18^n]=7K vì đặt K là [25^(n-1)+ 25^(n-2).18^1 +.....+18^n, cái (12-5)H cx tương tự

Biểu thức đó đã chia hết cho 7 rồi, bây h cần chứng minh biểu thức đó chia hết cho 13 là xong
từ (1) nhóm ngược lại để chia hết cho 13. Cụ thể là (25^n-12^n)-(18^n-5^n) chia hết cho 13, cách chứng minh chia hết cho 13 này cx tương tự như cách c.minh chia hết cho 7

.1Mà biểu thức này vừa chia hết cho 7, vừa chia hết cho 13 nên chia hết cho (7.13)=91

Xong!!!

9 tháng 11 2017

hơi bị khó hiểu

8 tháng 10 2019

a,(2n+4).2=4(n+2) chia hwtc ho 8

8 tháng 10 2019

a) \(\left(n+3\right)^2-\left(n-1\right)^2\)

\(=\left(n+3+n-1\right)\left(n+3-n+1\right)\)

\(=\left(2n+2\right)4\)

\(=2\left(n+1\right).4\)

\(=8\left(n+1\right)⋮8\) 

=> đpcm

12 tháng 10 2016

Ta có: \(\sqrt{a^3+b^3+c^3}=\sqrt{\left(a+b+c\right)^2}=a+b+c\)(với a,b,c dương)

=>với mọi n dương ta cũng viết biểu thức đc dưới dạng:

\(S_n=\left(1+2+3+...+n\right)^2\)

Đặt \(A=1+2+3+....+n\)

Tổng A có số số hạng theo n là:

\(\left(n-1\right):1+1=n\)(số)

Tổng A theo n là:

\(\frac{n\left(n+1\right)}{2}\).Thay A vào ta có:

\(\Rightarrow S_n=\left[\frac{n\left(n+1\right)}{2}\right]^2\)

 

12 tháng 10 2016

Ta có công thức sau:

\(1+2+3+...+n=\frac{n\left(n+1\right)}{2}\)

\(\Rightarrow\left(1+2+3+...+n\right)^2=\left[\frac{n\left(n+1\right)}{2}\right]^2\) (*)

\(\Leftrightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\) (1)

Cần chứng minh (1) đúng với mọi n dương

Với \(n=1;n=2\) thì đẳng thức đúng

Giả sử đẳng thức đúng với \(n=k\)

Nghĩa là: \(1^3+2^3+...+k^3=\left(1+2+...+k\right)^2\)

Ta sẽ chứng minh nó đúng với \(n=k+1\)

Viết lại đẳng thức cần chứng minh \(1^3+2^3+...+k^3+\left(k+1\right)^3=\left(1+2+...+k+k+1\right)^2\)(**)

Ta cũng có công thức tương tự (*)

\(\Leftrightarrow\frac{\left(k+k\right)^2}{4}+\left(k+1\right)^3=\frac{\left(k^2+3k+2\right)^2}{4}\)

\(\Leftrightarrow\left(k^2+3k+2\right)^2-\left(k^2+k\right)^2=4\left(k+1\right)^3\)

\(\Leftrightarrow4k^3+12k^2+12k+4=4\left(k+1\right)^3\)

Vậy theo nguyên lý quy nạp ta có đpcm.

21 tháng 2 2018

\(A=n^3+\left(n+1\right)^3+\left(n+2\right)^3\)

\(=n^3+n^3+3n^2+3n+1+n^3+12n+6n^2+8\)

\(=3n^3+9n^2+15n+9\)

\(=3\left(n^3+5n\right)+9\left(n^2+1\right)\)

Ta thấy \(n^3+5n=n^3-n+6n=\left(n-1\right)n\left(n+1\right)+6n\)

\(\left(n-1\right)n\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(n-1\right)n\left(n+1\right)⋮3\)\(6n⋮3\) với n nguyên

\(\Rightarrow n^3+5n⋮3\Rightarrow3\left(n^3+5n\right)⋮9\)

\(9\left(n^2+1\right)⋮9\forall n\in Z\) nên \(3\left(n^3+5n\right)+9\left(n^2+1\right)⋮9\)

Hay \(A⋮9\) (đpcm)

22 tháng 2 2018

dung rui

29 tháng 10 2020