K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 5 2021

\(x^4+\dfrac{11}{2}x^2+x+6=\left(x^4+4x^2+4\right)+\dfrac{1}{2}\left(x^2+2x+1\right)+\dfrac{1}{2}x^2+\dfrac{3}{2}\)

\(=\left(x^2+2\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}x^2+\dfrac{3}{2}\)

Do \(\left\{{}\begin{matrix}\left(x^2+2\right)^2>0\\\dfrac{1}{2}\left(x+1\right)^2\ge0\\\dfrac{1}{2}x^2\ge0\end{matrix}\right.\) với mọi x

\(\Rightarrow\left(x^2+2\right)^2+\dfrac{1}{2}\left(x+1\right)^2+\dfrac{1}{2}x^2+\dfrac{3}{2}>0\) với mọi x

Vậy đa thức không có nghiệm

16 tháng 10 2022

a: \(\Leftrightarrow4^x\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)=4^8\left(\dfrac{3}{2}+\dfrac{5}{3}\cdot4^2\right)\)

=>4^x=4^8

=>x=8

b: \(\Leftrightarrow2^x\cdot\dfrac{1}{2}+2^x\cdot2=2^{10}\left(2^2+1\right)\)

=>2^x=2^11

=>x=11

c: =>1/6*6^x+6^x*36=6^15(1+6^3)

=>6^x=6*6^15

=>x=16

d: \(\Leftrightarrow8^x\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)=8^9\left(\dfrac{5}{3}\cdot8^2-\dfrac{3}{5}\right)\)

=>x=9

11 tháng 4 2018

\(M\left(x\right)=x^4+\frac{11}{2}x^2+x+6=\left(x^4+\frac{9}{2}x^2+\frac{81}{16}\right)+\left(x^2+x+\frac{1}{4}\right)+\frac{11}{16}\)

=> \(M\left(x\right)=\left(x^4+2.\frac{9}{4}x^2+\left(\frac{9}{4}\right)^2\right)+\left(x^2+2.\frac{1}{2}x+\left(\frac{1}{2}\right)^2\right)+\frac{11}{16}\)

=> \(M\left(x\right)=\left(x^2+\frac{9}{4}\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{11}{16}\)

Nhận thấy: Do \(\left(x^2+\frac{9}{4}\right)^2>0;\left(x+\frac{1}{2}\right)^2\ge0\)Với mọi x

=> \(M\left(x\right)>\frac{11}{16}\) với mọi x

=> Đa thức M(x) vô nghiệm (không có nghiệm)

23 tháng 6 2018

1,

\(\left(2x+1\right)^3=-0,001\\ \left(2x+1\right)^3=\left(-0.1\right)^3\\ \Leftrightarrow2x+1=-0.1\\ 2x=-1.1\\ x=-\dfrac{11}{10}:2\\ x=-\dfrac{11}{20}\\ Vậy...\)

2,

\(\left(2x-3\right)^4=\left(2x-3\right)^6\\ \Leftrightarrow\left(2x-3\right)^6-\left(2x-3\right)^4=0\\ \Leftrightarrow\left(2x-3\right)^4\cdot\left[\left(2x-3\right)^2-1\right]=0\\ \Rightarrow\left\{{}\begin{matrix}\left(2x-3\right)^4=0\\\left(2x-3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x-3=0\\\left(2x-3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}2x=3\\2x-3=1\end{matrix}\right.\\ \Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{2}\\x=2\end{matrix}\right.\\ Vậyx\in\left\{\dfrac{3}{2};2\right\}\)

3, Làm tương tự câu 2

5,

\(9^x:3^x=3\\ \left(9:3\right)^x=3\\ 3^x=3\\ \Rightarrow x=1\\ Vậy...\)

6,

\(3^x+3^{x+3}=756\\ 3^x+3^x\cdot3^3\\ 3^x\cdot\left(1+27\right)=756\\ 3^x\cdot28=756\\ \Leftrightarrow3^x=27\\ 3^x=3^3\\ \Rightarrow x=3\\ vậy...\)

7,

\(5^{x+1}+6\cdot5^{x+1}=875\\ 5^{x+1}\cdot\left(1+6\right)=875\\ 5^{x+1}\cdot7=875\\ \Leftrightarrow5^{x+1}=125\\ \Leftrightarrow5^{x+1}=5^3\Leftrightarrow x+1=3\\ \Rightarrow x=2\\ Vậy...\)

9,

23 tháng 6 2018

lê thị hồng vân trả lời típ đikhocroi

a) thu gọn đi rùi tìm ngiệm nhưng chắc đa thức P(x) ko có nghiệm đâu!!!!

nghĩ thui

16 tháng 4 2016

bạn làm cho mình câu b nhé

9 tháng 4 2017

Chạy tiếp sức

(a) bản chất chỉ là bước đệm để làm câu (b)

b)

lấy kq câu (a) của @ trước đó

\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\dfrac{1}{4}x^2+x+1+5\)

\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\left(\dfrac{x}{2}+1\right)^2+5\)

\(\left\{{}\begin{matrix}x^4\ge0\forall x\\\dfrac{21}{4}x^2\ge0\forall x\\\left(\dfrac{x}{2}+1\right)^2\ge0\forall x\\\end{matrix}\right.\) =>\(M\left(x\right)=x^4+\dfrac{21}{4}x^2+\left(\dfrac{x}{2}+1\right)^2+5>0\)với mọi x => M(x) không có nghiệm=> Nếu (a) đúng => dpcm

9 tháng 4 2017

a) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)

\(=x^4-5x+2x^2+1+5x+3x^2+5+\dfrac{1}{2}x^2+x\\ =x^4+\dfrac{11}{2}x^2+x+6\)

25 tháng 4 2017

a. P(x)+Q(x)=(3x4 + x3- x2- \(\dfrac{1}{4}\)x)+(3x4- 4x3+x2-\(\dfrac{1}{4}\))=6x4-3x3+\(\dfrac{1}{2}\)

Tương tự làm P(x)-Q(X) nhé !!!

b. Thay x = 0 vào đa thức P(x) ta có :

.....................................................

thay x = 0 vào đa thức Q(x) ta có:

......................................................

=> đpcm

7 tháng 4 2019

\(R\left(x\right)=x^2+6x+11=\left(x^2+6x+9\right)+2=\left(x+3\right)^2+2\ge2>0\)

\(\Rightarrow R\left(x\right)\) không có nghiệm

\(H\left(x\right)=x^2-8x+20=\left(x^2-8x+16\right)+4=\left(x-4\right)^2+4\ge4>0\)

\(\Rightarrow H\left(x\right)\) không có nghiệm

7 tháng 4 2019

làm vẫn thiếu bước ko hiểu gì hết

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2  a) Xác định đa thức P(x) và Q(x)  b) Tìm nghiệm của đa thức P(x) và Q(x)  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1...
Đọc tiếp

Bài 1: Cho đa thức P(x) và Q(x) là các đơn thức thỏa mãn:
       P(x) + Q(x) = x3+x2-4x+2 và P(x) - Q(x) = x3-x2+2x-2
  a) Xác định đa thức P(x) và Q(x)
  b) Tìm nghiệm của đa thức P(x) và Q(x)
  c) Tính giá trị của P(x) và Q(x) biết |x- |\(\dfrac{x}{2}\)- |x-1||| = x-2
Bài 2: Biết rằng P(x) = n.xn+4+ 3.x4-n- 2x3+ 4x- 5 và Q(x) = 3.xn+4- x4+ x3+ 2nx2+ x- 2 là các đa thức với n là 1 số nguyên. Xác định n sao cho P(x) - Q(x) là 1 đa thức bậc 5 và có 6 hạng tử
Bài 3: Cho đa thức P(x) = x+ 7x2- 6x3+ 3x4+ 2x2+ 6x- 2x4+ 1
   a) Thu gọn đa thức rồi sắp xếp các số hạng của đa thức theo lũy thừa giảm dần của biến x
   b) Xác định bậc của đa thức, hệ số tự do, hệ số cao nhất
   c) Tính P(-1); P(0); P(1); P(-a)
Bài 4: Cho đa thức bậc hai P(x) = ax2+ bx+ c với a ≠ 0
   a) Chứng tỏ rằng nếu đa thức có nghiệm x = 1 thì sẽ có nghiệm x = \(\dfrac{c}{a}\)
   b) Chứng tỏ rằng nếu đa thức có nghiệm x = -1 thì sẽ có nghiệm x = -\(\dfrac{c}{a} \)

1
7 tháng 4 2018

pan a ban giong bup be lam nhung bup be lam = nhua deo va no del co nao nhe

I/ Trắc nghiệm: Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là: A. 0 B. -7 C. 1 D. 6 Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là: A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là: A. 0 B. 4 C. 3 D. 7 Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\)...
Đọc tiếp

I/ Trắc nghiệm:

Câu 1: Gía trị của biểu thức x3y - x2y2 -5 tại x = 1; y = -1 là:

A. 0 B. -7 C. 1 D. 6

Câu 2: Kết quả phép nhân hai đơn thức (-\(\dfrac{1}{3}\)x3y)2. (-9x2yz2) là:

A. x7y3z2 B. (-x8y3z2) C. x8y3z2 D. Một kết quả khác

Câu 3: Bậc của đa thức 7x4 - 4x + 6x3 - 7x4 + x2 + 1 là:

A. 0 B. 4 C. 3 D. 7

Câu 4: Nghiệm của đa thức P(x) = 3x + \(\dfrac{1}{5}\) là:

A. x = \(\dfrac{1}{3}\) B. x = -\(\dfrac{1}{5}\) C. x = \(\dfrac{1}{5}\) D. x = -\(\dfrac{1}{15}\)

Câu 5: Kết quả thu gọn -x5y3 + 3x5y3 - 7x5y3 là :

A. -5x5y3 B. 5x5y3 C. 10x5y3 D. -8x5y3

II/ Tự luận

Bài 1; Thu gọn biểu thức, tìm bậc, hệ số và phần biến

\(\dfrac{-2}{3}\)​x3y2z(3x2yz)2

Bài 2:

a) Tìm đa thức A,biết: A + (x2y - 2xy2 + 5xy + 1) = -2x2y + xy2 - xy -1
b) Tính giá trị của đa thức A, biết x = 1, y = 2

Bài 3: Cho f(x) = 9 - x5 + 4x - 2x3 + x2 - 7x4

g(x) = x5 - 9 + 2x2 + 7x4 + 2x3 - 3x

a) Sắp xếp các đa thức trên theo luỹ thừa giảm dần của biến

b) Tính f(x) + g(x); g(x) - f(x)

Bài 4:

a) Tìm nghiệm của đa thức P(x) = -x + 3

b) Tìm hệ số m của đa thức A(x) = mx2 + 5x - 3

Biết rằng đa thức có 1 nghiệm là x = -2?

1
5 tháng 4 2018

I . Trắc Nghiệm

1B . 2D . 3C . 5A

II . Tự luận

2,a,Ta có: A+(x\(^2\)y-2xy\(^2\)+5xy+1)=-2x\(^2\)y+xy\(^2\)-xy-1

\(\Leftrightarrow\) A=(-2x\(^2\)y+xy\(^2\)-xy-1) - (x\(^2\)y-2xy\(^2\)+5xy+1)

=-2x\(^2\)y+xy\(^2\)-xy-1 - x\(^2\)y+2xy\(^2\)-5xy-1

=(-2x\(^2\)y - x\(^2\)y) + (xy\(^2\)+ 2xy\(^2\)) + (-xy - 5xy ) + (-1 - 1)

= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

b, thay x=1,y=2 vào đa thức A

Ta có A= -3x\(^2\)y + 3xy\(^2\) - 6xy - 2

= -3 . 1\(^2\) . 2 + 3 .1 . 2\(^2\) - 6 . 1 . 2 -2

= -6 + 12 - 12 - 2

= -8

3,Sắp xếp

f(x) =9-x\(^5\)+4x-2x\(^3\)+x\(^2\)-7x\(^4\)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x

g(x) = x\(^5\)-9+2x\(^2\)+7x\(^4\)+2x\(^3\)-3x

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

b,f(x) + g(x)=(9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x) + (-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x)

=9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x

=(9-9)+(-x\(^5\)+x\(^5\))+(-7x\(^4\)+7x\(^4\))+(-2x\(^3\)+2x\(^3\))+(x\(^2\)+2x\(^2\))+(4x-3x)

= 3x\(^2\) + x

g(x)-f(x)=(-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x) - (9-x\(^5\)-7x\(^4\)-2x\(^3\)+x\(^2\)+4x)

=-9+x\(^5\)+7x\(^4\)+2x\(^3\)+2x\(^2\)-3x-9+x\(^5\)+7x\(^4\)+2x \(^3\)-x\(^2\)-4x

=(-9-9)+(x\(^5\)+x\(^5\))+(7x\(^4\)+7x\(^4\))+(2x\(^3\)+2x\(^3\))+(2x\(^2\)-x\(^2\))+(3x-4x)

= -18 + 2x\(^5\) + 14x\(^4\) + 4x\(^3\) + x\(^2\) - x

3 tháng 5 2017

a, \(P\left(x\right)=4x-\dfrac{1}{2}\)

\(\Rightarrow P\left(x\right)=4x-\dfrac{1}{2}=0\)

\(\Rightarrow x=\dfrac{1}{8}\)

b, \(Q\left(x\right)=\left(x-1\right)\left(x+1\right)\)

\(\Rightarrow Q\left(x\right)=\left(x-1\right)\left(x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)

c, \(A\left(x\right)=x^2-7x+6\)

\(\Rightarrow A\left(x\right)=x^2-7x+6=0\)

\(\Rightarrow x^2-6x-x+6=0\)

\(\Rightarrow x\left(x-6\right)-\left(x-6\right)=0\)

\(\Rightarrow\left(x-6\right)\left(x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-6=0\\x-1=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=6\\x=1\end{matrix}\right.\)

3 tháng 5 2017

mn làm ơn giúp mik vs, thanks nhiều