K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 10 2017

Đặt:

\(linh=\dfrac{x}{x+y+z}+\dfrac{y}{y+z+t}+\dfrac{z}{z+t+x}+\dfrac{t}{t+x+y}\)

Giả sử: \(linh\in N\)

Điều này chứng tỏ:

\(\left\{{}\begin{matrix}\dfrac{x}{x+y+z}\in N\\\dfrac{y}{y+z+t}\in N\\\dfrac{z}{z+t+x}\in N\\\dfrac{t}{t+x+y}\in N\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x⋮x+y+z\\y⋮y+z+t\\z⋮z+t+x\\t⋮t+x+y\end{matrix}\right.\)

\(x;y;z;t\in N\circledast\) nên điều trên tương đương với:

\(\left\{{}\begin{matrix}x\ge x+y+z\\y\ge y+z+t\\z\ge z+t+x\\t\ge t+x+y\end{matrix}\right.\)(Không thể đồng thời xảy ra)
Nên: Điều giả sử sai,\(linh\notin N\left(đpcm\right)\)

20 tháng 10 2017

(A=dfrac{x}{x+y+z}+dfrac{y}{y+z+t}+dfrac{z}{z+t+x}+dfrac{t}{t+x+y})

Giả sử: (Ain N) thì

(left{{}egin{matrix}dfrac{x}{x+y+z}in N\dfrac{y}{y+z+t}in N\dfrac{z}{z+t+x}in N\dfrac{t}{x+y+t}in Nend{matrix} ight.) (Leftrightarrowleft{{}egin{matrix}x⋮x+y+z\y⋮y+z+t\z⋮z+t+x\t⋮t+x+yend{matrix} ight.)

(x;y;z;tin Ncircledast) nên

(left{{}egin{matrix}xge x+y+z\yge y+z+t\zge z+t+x\tge t+x+yend{matrix} ight.Leftrightarrowleft{{}egin{matrix}x+yle0\z+tle0\t+xle0\x+yle0end{matrix} ight.)

Điều trên ko thể xảy ra, (A otin N)

20 tháng 10 2017

Thấy hơi chém 0,1+0,9=1 đó thôi!

24 tháng 10 2018

\(M>\dfrac{x}{x+y+z+t}+\dfrac{y}{x+y+z+t}+\dfrac{z}{x+y+z+t}+\dfrac{t}{x+y+z+t}=1\)

\(\dfrac{a}{b}< 1\Rightarrow\) \(\dfrac{a}{b}< \dfrac{a+m}{b+m}\) (Bạn chứng minh qua nhân chéo nhé)

\(\Rightarrow M< \dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}=2\)

Do \(1< M< 2\)\(1\)\(2\) là hai số tự nhiên liên tiếp

\(\Rightarrow M\notin\) N

15 tháng 12 2017

Sai đề chỗ p/s cuối. Xét 2 t/h.

Oáp Z_z có gì mai ns nhé!

6 tháng 2 2018

mk ko làm cụ thể nhưng chỉ nêu hướng lm thôi nhé

bn áp dụng tích chất dãy tỉ số bằng nhau vào giả thiết, ra 1/3

sau đó suy ra x = (y+z+t)/3, y,z,t cũng làm tương tự

sau đó bạn quy đồng các mẫu của P

sau khi phân tích bn sẽ lấy kq vừa tính đc phần trên

mk nghĩ kết quả ra là 15 nhưng có thể sai

chúc bn may mắn

16 tháng 6 2017

Ta có: \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{y+t+x}=\dfrac{t}{y+x+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{y+t+x}=\dfrac{x+y+z+t}{y+x+z}\)+) Xét \(x+y+z+t=0\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(x+t\right)\\z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\end{matrix}\right.\)

\(\Rightarrow A=-1\)

+) Xét \(x+y+z+t\ne0\Rightarrow x=y=z=t\)

\(\Rightarrow A=1\)

Vậy A = -1 hoặc A = 1

16 tháng 6 2017

Ta có:\(\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{y+t+x}+1=\dfrac{t}{y+x+z}+1\)\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

Nếu x+y+z+t\(\ne\)0 thì y+z+t=z+t+x=t+x+y=x+y+z

=>x=y=z=t nên P=1+1+1+1=4

Nếu X+y+z+t=0 thì P=-4

30 tháng 3 2018

Ta có :

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Leftrightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Leftrightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

+) Nếu \(x+y+z+t\ne0\)

\(\Leftrightarrow y+z+t=z+t+x=t+x+y=x+y+z\)

\(\Leftrightarrow x=y=z=t\ne0\)

\(P=\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

\(\Leftrightarrow P=\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

\(\Leftrightarrow P=\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}+\dfrac{2x}{2x}\)

\(\Leftrightarrow P=4\)

+) Nếu \(x+y+z+t=0\)

\(\Leftrightarrow x+y=-\left(z+t\right)\)

\(\Leftrightarrow\dfrac{x+y}{z+t}=\dfrac{-\left(z+t\right)}{z+t}=-1\)

Tương tự ta có :

\(\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}=-1\)

\(\Leftrightarrow P=-4\)

Vậy ..

2 tháng 11 2017

\(\dfrac{y+z+t-nx}{x}=\dfrac{z+t+x-ny}{y}=\dfrac{t+x+y-nz}{z}=\dfrac{x+y+z-nt}{t}\)

\(=\dfrac{y+z+t-nx+z+t+x-ny+t+x+y-nz+x+y+z-nt}{x+y+z+t}\)

\(=\dfrac{3x+3y+3z+3t-n\left(x+y+z+t\right)}{x+y+z+t}\)

\(=\dfrac{3\left(x+y+z+t\right)-n\left(x+y+z+t\right)}{x+y+z+t}=\dfrac{\left(3-n\right)\left(x+y+z+t\right)}{x+y+z+t}=3-n\)

Nên \(\left\{{}\begin{matrix}y+z+t-nx=3x-nx\\z+t+x-ny=3y-ny\\t+x+y-nz=3z-nz\\x+y+z-nt=3t-nt\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}y+z+t=3x\\z+t+x=3y\\t+x+y=3z\\x+y+z=3t\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{y+z+t}{3}\\y=\dfrac{z+t+x}{3}\\z=\dfrac{t+x+y}{3}\\t=\dfrac{x+y+z}{3}\end{matrix}\right.\)

Thay vào \(P\) ta có:

\(P=x+2y-3z+t\)

\(P=\dfrac{y+z+t}{3}+\dfrac{2\left(z+t+x\right)}{3}-\dfrac{3\left(t+x+y\right)}{3}+\dfrac{x+y+z}{3}\)

\(P=\dfrac{y+z+t+2z+t+x-3t-3x-3y+x+y+z}{3}\)

\(P=\dfrac{\left(x+x-3x\right)+\left(y+y-3y\right)+\left(z+z+2z\right)+\left(t+t-3t\right)}{3}\)

\(P=\dfrac{-x-y-z+4t}{3}\)

\(P=\dfrac{-\left(x+y+z+t\right)+5t}{3}\)

\(P=\dfrac{-2012+5t}{3}\)

Tốn sức quá T^T

17 tháng 9 2017

\(M=\dfrac{x}{x+y+z}+\dfrac{y}{x+y+t}+\dfrac{z}{y+z+t}+\dfrac{t}{x+z+t}\)

\(M+4=\left(\dfrac{x}{x+y+z}+1\right)+\left(\dfrac{y}{x+y+t}+1\right)+\left(\dfrac{z}{y+z+t}+1\right)+\left(\dfrac{t}{x+z+t}+1\right)\)\(M+4=\dfrac{x+t}{x+y+z+t}+\dfrac{y+z}{x+y+z+t}+\dfrac{z+x}{x+y+z+t}+\dfrac{t+y}{x+y+z+t}\)\(M+4=\dfrac{x+t+y+z+z+x+t+y}{x+y+z+t}\)

\(M+4=\dfrac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(M+4=2\)

\(M=2-4=-2\notin N\)

Ta có đpcm

NV
9 tháng 12 2018

\(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}=\dfrac{x+y+z+t}{3\left(x+y+z+t\right)}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{1}{3}=\dfrac{x+y}{\left(x+y\right)+2\left(z+t\right)}\)

\(\Rightarrow\left(x+y\right)+2\left(z+t\right)=3\left(x+y\right)\)

\(\Rightarrow2\left(z+t\right)=2\left(x+y\right)\Rightarrow\dfrac{x+y}{z+t}=1\)

Chứng minh tương tự ta được:

\(\dfrac{y+z}{x+t}=1;\dfrac{z+t}{x+y}=1;\dfrac{t+x}{y+z}=1\)

\(\Rightarrow P=1+1+1+1=4\)

29 tháng 12 2018

+Xét x+y+z+t=0

\(\Rightarrow\)\(\left\{{}\begin{matrix}z+t=-\left(x+y\right)\\x+t=-\left(y+z\right)\\x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\end{matrix}\right.\)

Khi đó M=-4

+Xét x+y+z+t\(\ne\)0

ADTC dãy tỉ số bằng nhau ta có

\(\dfrac{x}{y+z+t}\)=\(\dfrac{y}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{z}{x+y+t}\)=\(\dfrac{x+y+z+t}{3.\left(x+y+z+t\right)}\)=\(\dfrac{1}{3}\)

+Với\(\dfrac{x}{y+z+t}\)=\(\dfrac{1}{3}\)

\(\Rightarrow\)3x=y+z+t

\(\Rightarrow\)4x=x+y+z+t

Chứng minh tương tự ta có

4y=x+y+z+t

4z=x+y+z+t

4t=x+y+z+t

Do đó x=y=z=t

Khi đó M=4

12 tháng 4 2017

Từ \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

\(\Rightarrow\dfrac{x}{y+z+t}+1=\dfrac{y}{z+t+x}+1=\dfrac{z}{t+x+y}+1=\dfrac{t}{x+y+z}+1\)

\(\Rightarrow\dfrac{x+y+z+t}{y+z+t}=\dfrac{x+y+z+t}{z+t+x}=\dfrac{x+y+z+t}{t+x+y}=\dfrac{x+y+z+t}{x+y+z}\)

\(x+y+z+t\ne0\) nên ta đi xét \(x+y+z+t=0\)

\(\Rightarrow\left\{{}\begin{matrix}x+y=-\left(z+t\right)\\y+z=-\left(t+x\right)\\z+t=-\left(x+y\right)\\t+x=-\left(y+z\right)\end{matrix}\right.\). Khi đó

\(P=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)=4\)

12 tháng 4 2017

hình như bạn làm nhầm rùi thì phải x+y+z+t khác 0 rồi sao lại x +y+z+t = 0 nữa zậy bạn