Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(n^2\left(n^4-1\right)=n^2\left(n^2+1\right)\left(n^2-1\right)=\left(n-1\right).n.\left(n+1\right).\left(n^2+1\right)\)
\(=\left(n-1\right).n.\left(n+1\right).\left(n^2-4+5\right)\)
\(=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+5\left(n-1\right).n.\left(n+1\right)\)
Vì \(\left(n-2\right).\left(n-1\right).n.\left(n+1\right).\left(n+2\right)\) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 3,4,5 mà (3,4,5) = 1
Suy ra tích này chia hết cho 3x4x5 = 60 (1)
Mặt khác suy luận tương tự ta cũng suy ra được 5(n-1).n.(n+1) chia hết cho 60 (2)
Từ (1) và (2) suy ra đpcm
Cho hình thoi ABCD có cạnh là a. Gọi r1 và r2 laf bán kính các đường tròn ngoại tiếp tam giác ABC và ABD.
cmr: \(a.\frac{1}{r^2_1}+\frac{1}{r_2^2}=\frac{4}{a^2}\)
\(b.S_{ABCD}=\frac{8r_1^3r_2^3}{\left(r_1^2+r_2^2\right)^2}\)
a) GIA SU n=3 (dung) 8>7
gia su dung voi moi k thuocN* (k>=3)
suy ra 2^k>2k+1 (k>=3)
\(2^{k+1}=2^k+2^k\)
<=>\(2^{k+1}>2\left(2k+1\right)\)
<=>\(2^{k+1}>4k+2\)
(2k>1 voi k>=3)=>\(4k+2>2k+3\)
<=>\(2^{k+1}>2k+3\)dung voi moi k thuoc N* (k>=3)
b) tuong tu
2n = 2 . 2 . 2 ... 2 (n thừa số 2) \(\ge\) 1 (1)
Vì n \(\in\) N nên do đó n + 1 \(\ge\) 1 (2)
Từ (1) và (2) suy ra 2n \(\ge\) n + 1 (dấu = xảy ra <=> n = 0)