K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2016

Ta có: a2+b2+1≥ab+a+b

<=>2a2+2b2+2≥2ab+2a+2b

<=>(a2−2ab+b2)+(a2−2a+1)+(b2−2b+1)≥0

<=>(a−b)2+(a−1)2+(b−1)2≥0 ( Luôn đúng với V a,b)

Vậy  a2+b2+1≥ab+a+b

20 tháng 7 2016

x2+y2+z2+3> hoac = 2(x+y+z)

\(x^2+y^2+z^2+3-2\left(x+y+z\right)\ge0\)

\(\Rightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)

\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)

\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)(Đpcm)

Dấu = khi (x-1)2=(y-1)2=(z-1)2=0 =>x=y=z=1

4 tháng 8 2016

x4+x2+1

=(x2)2+2x2+1-2x2+x2

=(x2+1)2-2x2+x2 

= (x² + 1)² − x² 

= (x² + x+ 1 )(x² − x+ 1 )

 

4 tháng 8 2016

\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)

11 tháng 2 2016

Cho  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  (với  \(xyz\ne0\) ). Tính:  \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}\) 

                                                                               \(-----------------\)

Chú ý rằng nếu  \(x+y+z=0\)  thì  \(x^3+y^3+z^3=3xyz\)

Thật vậy,  \(x+y+z=0\)  \(\Rightarrow\)  \(z=-\left(x+y\right)\)

Do đó,  \(x^3+y^3+z^3=x^3+y^3+\left[-\left(x+y\right)\right]^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)

\(\rightarrow\)  Nhận xét dưới đây cũng có thể suy ra ngay từ kết quả của bài trên:

\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

Áp dụng nhận xét trên, ta có:

Nếu  \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\)  thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\) 

Do đó, \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\)  với  \(xyz\ne0\)

 

25 tháng 9 2018

con đĩ non