Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2+y2+z2+3> hoac = 2(x+y+z)
\(x^2+y^2+z^2+3-2\left(x+y+z\right)\ge0\)
\(\Rightarrow x^2+y^2+z^2+3-2x-2y-2z\ge0\)
\(\Rightarrow\left(x^2-2x+1\right)+\left(y^2-2y+1\right)+\left(z^2-2z+1\right)\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(y-1\right)^2+\left(z-1\right)^2\ge0\)(Đpcm)
Dấu = khi (x-1)2=(y-1)2=(z-1)2=0 =>x=y=z=1
x4+x2+1
=(x2)2+2x2+1-2x2+x2
=(x2+1)2-2x2+x2
= (x² + 1)² − x²
= (x² + x+ 1 )(x² − x+ 1 )
\(x^4+x^2+1\)
\(=\left[\left(x^2\right)^2+2.x^2.\frac{1}{2}+\left(\frac{1}{2}\right)^2\right]-\left(\frac{1}{2}\right)^2+1\)
\(=\left(x^2+\frac{1}{2}\right)^2-\frac{1}{4}+\frac{4}{4}\)
\(=\left(x^2+\frac{1}{2}\right)^2+\frac{3}{4}\)
Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) (với \(xyz\ne0\) ). Tính: \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}\)
\(-----------------\)
Chú ý rằng nếu \(x+y+z=0\) thì \(x^3+y^3+z^3=3xyz\)
Thật vậy, \(x+y+z=0\) \(\Rightarrow\) \(z=-\left(x+y\right)\)
Do đó, \(x^3+y^3+z^3=x^3+y^3+\left[-\left(x+y\right)\right]^3=-3x^2y-3xy^2=-3xy\left(x+y\right)=3xyz\)
\(\rightarrow\) Nhận xét dưới đây cũng có thể suy ra ngay từ kết quả của bài trên:
\(x^3+y^3+z^3=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)
Áp dụng nhận xét trên, ta có:
Nếu \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\) thì \(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}=3.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}=\frac{3}{xyz}\)
Do đó, \(\frac{xy}{z^2}+\frac{yz}{x^2}+\frac{xz}{y^2}=\frac{xyz}{z^3}+\frac{xyz}{x^3}+\frac{xyz}{y^3}=xyz\left(\frac{1}{x^3}+\frac{1}{y^3}+\frac{1}{z^3}\right)=xyz.\frac{3}{xyz}=3\) với \(xyz\ne0\)
Ta có: a2+b2+1≥ab+a+b
<=>2a2+2b2+2≥2ab+2a+2b
<=>(a2−2ab+b2)+(a2−2a+1)+(b2−2b+1)≥0
<=>(a−b)2+(a−1)2+(b−1)2≥0 ( Luôn đúng với
Va,b)Vậy a2+b2+1≥ab+a+b