K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 5 2017

a/ Ta có: + AB2 + AC2 = 62 + 82 = 100

               + BC2 = 102 = 100 

       => AB2 + AC2 = BC2 = 100

      => tam giác ABC vuông tại A theo định lí pytago

b/ 4 ý này trong sách hình học 9 có CM nha bạn

c/ AH.BC = AB.AC

=> AH = \(\frac{AB.AC}{BC}=\frac{6.8}{10}=6,8\)cm

AB2= BC.BH

=> BH= \(\frac{AB^2}{BC}\)=  \(\frac{6^2}{10}\)

                            = 3,6 cm

AC2 = BC.CH

=> CH= \(\frac{AC^2}{BC}=\frac{8^2}{10}=6,4cm\)

22 tháng 5 2017

cái này toàn dùng tam giác đồng dạng để cm thôi

Ta có AH=DE ( vì ADHE là hcn)

mà AH2=BH.BC

=> AH4=HB2.HC2=BD.CE.BC.BA

=> AH3=BD.CE.BC

23 tháng 6 2017

a, bc^2 = ab^2 +ac^2 

      <=.> (ae+eb)^2   +(af+fc)^2

     <=.>AE^2 +2 AE.EB +EB^2 +AF^2+FC^2+2AF,FC 

<=> EF^2 +EB^2 +CF^2 +2.(EH^2+FH^2)

<=>EB^2 +CF^2 + AH ^2  + 2 AH^2 vì tứ giác EHAF là hcn suy ra AH =EF 

<=>EB^2 +CF^2+3 AH^2  (đpcm)

b, cb =2a là thế nào vậy

25 tháng 6 2017

đề bài cho vậy 

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Lời giải:

a) Áp dụng đl Pitago cho các tam giác vuông $BHE, CHF$:

\(BC^2=(BH+CH)^2=BH^2+CH^2+2BH.CH\)

\(=BE^2+EH^2+FH^2+CF^2+2BH.CH\)

\(=(EH^2+HF^2)+2BH.CH+BE^2+CF^2(1)\)

Xét tứ giác $AEHF$ có 3 góc vuông \(\widehat{EAF}=\widehat{HFA}=\widehat{AEH}=90^0\) nên $AEHF$ là hình chữ nhật

\(\Rightarrow HF=EA\)

Do đó: \(EH^2+HF^2=EH^2+EA^2=AH^2(2)\) (theo định lý Pitago)

Xét tam giác $BAH$ và $ACH$ có:

\(\widehat{BAH}=\widehat{ACH}(=90^0-\widehat{HAC})\)

\(\widehat{BHA}=\widehat{AHC}=90^0\)

\(\Rightarrow \triangle BAH\sim \triangle ACH(g.g)\Rightarrow \frac{BH}{AH}=\frac{AH}{CH}\Rightarrow BH.CH=AH^2(3)\)

Từ \((1);(2);(3)\Rightarrow BC^2=AH^2+2.AH^2+BE^2+CF^2=3AH^2+BE^2+CF^2\)

(đpcm)

b)

Xét tam giác $BAH$ và $BCA$ có:

\(\widehat{B}\) chung

\(\widehat{BHA}=\widehat{BAC}=90^0\)

\(\Rightarrow \triangle BAH\sim \triangle BCA(g.g)\Rightarrow \frac{BA}{BH}=\frac{BC}{BA}\)

\(\Rightarrow BH=\frac{BA^2}{BC}(4)\)

Hoàn toàn tương tự: \(\triangle CAH\sim \triangle CBA(g.g)\Rightarrow CH=\frac{CA^2}{BC}(5)\)

Từ \((4);(5)\Rightarrow \frac{BH}{CH}=\frac{BA^2}{BC}:\frac{CA^2}{BC}=\frac{BA^2}{CA^2}\) (đpcm)

c)

Hoàn toàn tương tự như cách CM tam giác đồng dạng phần b, ta có:

\(\triangle BHE\sim \triangle BAH(g.g)\Rightarrow \frac{BH}{BA}=\frac{BE}{BH}\Rightarrow BE=\frac{BH^2}{AB}\)

\(\triangle CHF\sim \triangle CAH(g.g)\Rightarrow \frac{CH}{CA}=\frac{CF}{CH}\Rightarrow CF=\frac{CH^2}{CA}\)

Do đó, kết hợp với kết quả phần b:

\(\frac{BE}{CF}=\frac{BH^2}{AB}:\frac{CH^2}{CA}=(\frac{BH}{CH})^2.\frac{CA}{AB}=\frac{AB^4}{AC^4}.\frac{AC}{AB}=\frac{AB^3}{AC^3}\) (đpcm)

d) Ta có:

\(BC.HE.HF=BC.\frac{HE.BA}{BA}.\frac{HF.AC}{AC}=BC.\frac{2S_{BHA}}{BA}.\frac{2S_{CHA}}{CA}\)

\(=BC.\frac{BH.AH}{BA}.\frac{CH.AH}{CA}=\frac{BC.AH}{AB.AC}.AH.BH.CH\)

\(=\frac{2S_{ABC}}{2S_{ABC}}.AH.AH^2\) (theo (3))

\(=AH^3\) (đpcm)

AH
Akai Haruma
Giáo viên
26 tháng 6 2019

Hình vẽ:

Hệ thức lượng trong tam giác vuông