Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sách hay cái zì bạn?nếu đề thi hay bài tập bạn chụp rùi gửi mail(lethihuong34567890@gmail.com) cho mk đc hơm? còn nếu sách thì chỉ cần chụp bìa dc gùi
Điều kiện:
\(x-1\ne0\Rightarrow x\ne1\)
\(x^3+x\ne0\Leftrightarrow x\ne0\)
a, \(4x+6y-x^2-y^2+2\)
\(=-\left(x^2+y^2-4x-6y-2\right)\)
\(=-\left(x^2-2x-2x+4+y^2-3y-3y+9-15\right)\)
\(=-\left[\left(x^2-2x\right)-\left(2x-4\right)+\left(y^2-3y\right)-\left(3y-9\right)-15\right]\)
\(=-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\)
Với mọi giá trị của \(x;y\in R\) ta có:
\(\left(x-2\right)^2\ge0;\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2\ge0\)
\(\Rightarrow\left(x-2\right)^2+\left(y-3\right)^2-15\ge-15\)
\(\Rightarrow-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]\le15\)
Để \(-\left[\left(x-2\right)^2+\left(y-3\right)^2-15\right]=15\) thì \(\left(x-2\right)^2+\left(y-3\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)^2=0\\\left(y-3\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)
Vậy GTLN của biểu thức là 15 đạt được khi và chỉ khi \(x=2;y=3\)
Câu b làm tương tự! Chúc bạn học tốt!!!
Thui đang chán không có bài :) làm lun:
b, \(-x^2-4y^2-z^2+2x+12y-4z-10\)
\(=-\left(x^2+4y^2+z^2-2x-12y+4z+10\right)\)
\(=-\left(x^2-x-x+1+4y^2-6y-6y+9+z^2+2z+2z+4-4\right)\)
\(=-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\)
Với mọi giá trị của \(x;y;z\in R\) ta có:
\(\left(x-1\right)^2\ge0;\left(2y-3\right)^2\ge0;\left(z+2\right)^2\ge0\)
\(\Rightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\ge-4\)
\(\Rightarrow-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]\le4\)
với mọi giá trị của \(x;y;z\in R\).
Để \(-\left[\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2-4\right]=4\) thì
\(\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\)
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(2y-3\right)^2=0\\\left(z+2\right)^2=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\x=-2\end{matrix}\right.\)
Vậy .....
Chúc bạn học tốt!!!
Bạn ơi! Bạn xem lại đề chứ mình làm thử kết quả ra một số thập phân tương đối dài đó bạn
Bạn xem lại đề xem thử có sai gì không nha :))
\(\left(x+3\right)\left(2x-4\right)-\left(x-3\right)=0\)
\(\Leftrightarrow2x^2+2x-12-x+3=0\)
\(\Leftrightarrow2x^2+x-9=0\)
\(\Delta=1^2-4\cdot2\cdot\left(-9\right)=73\)
\(\Rightarrow x_{1,2}=\dfrac{-1\pm\sqrt{73}}{4}\)
a) \(x^3-\dfrac{1}{9}x=0\)
\(\Rightarrow x\left(x^2-\dfrac{1}{9}\right)=0\)
\(\Rightarrow x\left(x-\dfrac{1}{3}\right)\left(x+\dfrac{1}{3}\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{1}{3}=0\Leftrightarrow x=\dfrac{1}{3}\\x+\dfrac{1}{3}=0\Leftrightarrow x=-\dfrac{1}{3}\end{matrix}\right.\)
b) \(x\left(x-3\right)+x-3=0\)
\(\Rightarrow\left(x-3\right)\left(x+1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-3=0\Rightarrow x=3\\x+1=0\Rightarrow x=-1\end{matrix}\right.\)
c) \(2x-2y-x^2+2xy-y^2=0\) (thêm đề)
\(\Rightarrow2\left(x-y\right)-\left(x-y\right)^2=0\)
\(\Rightarrow\left(x-y\right)\left(2-x+y\right)=0\)
\(\Rightarrow\left\{{}\begin{matrix}x-y=0\Rightarrow x=y\\2-x+y=0\Rightarrow x-y=2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=y\left(1\right)\\\left(1\right)\Rightarrow x-x=2\left(loại\right)\end{matrix}\right.\)
d) \(x^2\left(x-3\right)+27-9x=0\)
\(\Rightarrow x^2\left(x-3\right)+\left(x-3\right).9=0\)
\(\Rightarrow\left(x-3\right)\left(x^2+9\right)=0\)
\(\Rightarrow x-3=0\Rightarrow x=3.\)
x11+x4+1
= x11+x10+x9-x10-x9-x8+x8+x7+x6-x7-x6-x5+x5+x4+x3-x3-x2-x+x2+x+1
= x9(x2+x+1)-x8(x2+x+1)+x6(x2+x+1)-x5(x2+x+1)+x3(x2+x+1)-x(x2+x+1)+(x2+x+1)
= (x2+x+1)(x9-x8+x6-x5+x3-x+1)
\(\dfrac{x^4+x^2y^2-x^3y-xy^3}{x^2+y^2}\)
\(=\dfrac{x^2\left(x^2+y^2\right)-xy\left(x^2+y^2\right)}{x^2+y^2}=x^2-xy\)
\(x^2-x+\dfrac{1}{2}=x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}-\dfrac{1}{4}+\dfrac{1}{2}\\ =\left(x^2-2\cdot\dfrac{1}{2}x+\dfrac{1}{4}\right)-\dfrac{1}{4}+\dfrac{1}{2}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\)
ta có: \(\left(x-\dfrac{1}{2}^{ }\right)^2\ge0\forall x\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}>0\forall x\left(vì\dfrac{1}{4}>0\right)\)
hay \(x^2-x+\dfrac{1}{2}>0\forall x\)