Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
=A=\(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
có (a+b)3=a3+3a2b+3ab2+b3
=a3+b3+3ab(a+b)
Ad ta có
A3=2+3(\(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)) .
(\(\sqrt[3]{\left(1+\dfrac{\sqrt{84}}{9}\right)\left(1-\dfrac{\sqrt{84}}{9}\right)}\))
A3=2+3A\(\sqrt[3]{1-\dfrac{84}{81}}\)
A3=2-A
=>A3+A-2=0
=>A3-A+2A-2=0
=>A(A2-1)+2(A-1)=0
=>A(A-1)(A+1)+2(A-1)=0
=>(A-1)(A2+A+2)=0
=>(A-1)(A2+2.\(\dfrac{1}{2}\)A+\(\dfrac{1}{4}\)+\(\dfrac{7}{4}\))=0
=>(A-1)((A+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\))=0
=> A=1
hoặc (A+\(\dfrac{1}{2}\))2+\(\dfrac{7}{4}\)=0(loại)
vậy A nguyên
Đặt \(A=\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
\(\Rightarrow A^3=1+\dfrac{\sqrt{84}}{9}+1-\dfrac{\sqrt{84}}{9}+3A.\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}.\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\)
\(\Leftrightarrow A^3=2+3A.\sqrt[3]{1-\dfrac{84}{81}}\)
\(\Leftrightarrow A^3=2+3A.\sqrt[3]{-\dfrac{3}{81}}=2+3A.\sqrt[3]{-\dfrac{1}{27}}\)
\(\Leftrightarrow A^3=2-A\)
\(\Leftrightarrow A^3+A-2=0\)
\(\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)
Dể thấy \(A^2+A+2=\left(A+\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\)
\(\Rightarrow A-1=0\Leftrightarrow A=1\)
Vậy \(\sqrt[3]{1+\dfrac{\sqrt{84}}{9}}+\sqrt[3]{1-\dfrac{\sqrt{84}}{9}}\) là số nguyên (đpcm)
Lời giải:
Đặt \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}=a; \sqrt[3]{1-\frac{\sqrt{84}}{9}}=b\)
Khi đó:
\(a^3+b^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}=2\)
\(ab=\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)\left(1-\frac{\sqrt{84}}{9}\right)}=\sqrt[3]{1-\frac{84}{81}}=\frac{-1}{3}\)
Suy ra:
\(D^3=(a+b)^3=a^3+b^3+3ab(a+b)=2+3.\frac{-1}{3}.D\)
\(\Leftrightarrow D^3=2-D\Leftrightarrow D^3+D-2=0\)
\(\Leftrightarrow D^2(D-1)+D(D-1)+2(D-1)=0\)
\(\Leftrightarrow (D-1)(D^2+D+2)=0\)
Dễ thấy \(D^2+D+2>0\Rightarrow D-1=0\Leftrightarrow D=1\)
Vậy $D$ là một số nguyên.
Bài 3:
a: \(A=\dfrac{x+5\sqrt{x}-10\sqrt{x}-5\sqrt{x}+25}{x-25}\)
\(=\dfrac{x-10\sqrt{x}+25}{x-25}=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
b: \(B=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}-3\right)}{x-9}=\dfrac{3}{\sqrt{x}+3}\)
Chứng minh rằng \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\) là một số nguyên
Đặt \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}=a;\sqrt[3]{1-\frac{\sqrt{84}}{9}}=b\Rightarrow x=a+b;a^3+b^3=2;ab=-\frac{1}{3}\)
Ta có:\(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=2-x\Leftrightarrow x^3+x-2=0\Leftrightarrow\left(x-1\right).\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x=1\).Vì \(x^2+x+2=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
Từ đó suy ra điều phải chứng minh
~~~~~~~~~~~ Chúc bạn hok tốt~~~~~~~~~~~~
Tính giá trị của biểu thức \(P=x^3+y^3-3\left(x+y\right)+2004\)
biết \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)và \(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)
Chứng minh rằng \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\) là một số nguyên
Đặt \(\sqrt[3]{1+\frac{\sqrt{84}}{9}}=a\);\(\sqrt[3]{1-\frac{\sqrt{84}}{9}}=b\)
\(\Rightarrow x=a+b;a^3+b^3=2;ab=-\frac{1}{3}\)
Ta có: \(x^3=\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)
\(\Rightarrow x^3=2-x\Leftrightarrow x^3+x-2=0\Leftrightarrow\left(x-1\right)\left(x^2+x+2\right)=0\)
\(\Leftrightarrow x=1\).vì \(x^2+x+2=0=\left(x+\frac{1}{2}\right)^2+\frac{7}{4}>0\)
=> đpcm
P/s tham khảo
Đặt \(A=\sqrt[3]{1+\frac{\sqrt{84}}{9}}+\sqrt[3]{1-\frac{\sqrt{84}}{9}}\)
\(\Rightarrow A^3=1+\frac{\sqrt{84}}{9}+1-\frac{\sqrt{84}}{9}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)^2\left(1-\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)\left(1-\frac{\sqrt{84}}{9}\right)^2}\)
\(A^3=2+3.\sqrt[3]{-\frac{1}{27}.\left(1+\frac{\sqrt{84}}{9}\right)}+3.\sqrt[3]{-\frac{1}{27}.\left(1-\frac{\sqrt{84}}{9}\right)}\)
\(=2-\left(\sqrt[3]{\left(1+\frac{\sqrt{84}}{9}\right)}+\sqrt[.3]{\left(1-\frac{\sqrt{84}}{9}\right)}\right)\)
\(A^3=2-A\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\Rightarrow A=1\)
Đặt \(A=\sqrt[3]{\frac{9+2\sqrt{21}}{9}}+\sqrt[3]{\frac{9-2\sqrt{21}}{9}}\)
\(A^3=\frac{9+2\sqrt{21}+9-2\sqrt{21}}{9}+3\sqrt[3]{\frac{9^2-4\cdot21}{9^2}}A\)
\(A^3-2+A=0\Leftrightarrow\left(A-1\right)\left(A^2+A+1\right)+A-1=0\Leftrightarrow\left(A-1\right)\left(A^2+A+2\right)=0\)
\(\Rightarrow A=1\)(ĐPCM)