Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bn ơi bn vào link này nhek bài thứ 2 từ cuối lên nhek https://diendantoanhoc.net/topic/151447-cho-x3-y3-3x2-y2-4xy-4-0-xy0-t%C3%ACm-max-frac1x-frac1y/
a. Ta có:\(\frac{x}{y}\sqrt{\frac{y^2}{x^4}=}\) \(\frac{x}{y}.\frac{\left|y\right|}{x^2}=\frac{x.y}{x^2y}\)\(=\frac{1}{x}\)(Vì \(x\ne0;y>0\))
b \(3x^2\sqrt{\frac{8}{x^2}}=3x^2\frac{2\sqrt{2}}{\left|x\right|}=\frac{6x^2\sqrt{2}}{-x}=-6x\sqrt{2}\)( Vì \(x< 0\))
P=(2x+1/x)+(2y+1/y)-(x+y)+(x/y+y/x)+2
+có (x+y)^2 </ 2(x^2+y^2)(C-S) => x+y </ 2 => -(x+y) >/ căn (2)
+am-gm 3 lần
\(1>=\left(x+y\right)^2>=\left(2\sqrt{xy}\right)^2=4xy\Rightarrow1>=4xy\Rightarrow\frac{1}{2}>=2xy\)(bđt cosi)
\(\Rightarrow\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}>=\frac{4}{x^2+2xy+y^2}+\frac{1}{\frac{1}{2}}\)
\(=\frac{4}{\left(x+y\right)^2}+2>=\frac{4}{1^2}+2=4+2=6\)
dấu = xảy ra khi \(x=y=\frac{1}{2}\)
vậy min \(\frac{1}{x^2+y^2}+\frac{1}{xy}=6\)khi \(x=y=\frac{1}{2}\)
A = \(\frac{6}{3x}+\frac{6}{2y}+\frac{12}{3x+2y}=6.\left(\frac{1}{3x}+\frac{1}{2y}\right)+\frac{12}{3x+2y}\)
Áp dụng BĐT: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b};\)với a;b không âm
=> A \(\ge6.\frac{4}{3x+2y}+\frac{12}{3x+2y}=\frac{36}{3x+2y}\)
Mặt khác, (3x + 2y)2 = (3x.1 + 2y.1)2 \(\le\) (12 + 12).(9x2 + 4y2) = 2.18 = 36
=> 0< 3x + 2y \(\le\) 6 => \(\frac{36}{3x+2y}\ge\frac{36}{6}=6\)
=> A \(\ge\) 6.
Vậy Min A = 6 khi 3x = 2y => 18x2 = 18 => x = 1 (do x > 0) => y = 3/2
https://olm.vn/hoi-dap/detail/5617054235.html
https://olm.vn/hoi-dap/detail/5617054235.html
Xem tại: Câu hỏi của Vương Hoàng Minh - Toán lớp 9 - Bất đẳng thức
Vì x, y > =0 theo BĐT Cô-si
\(x^6+y^9=\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}x^6+\frac{1}{4}y^9+\frac{1}{4}y^9+\frac{1}{4}y^9+\frac{1}{4}y^9+16+16+16+16-64\)
\(\ge12\sqrt[12]{\left(\frac{1}{4}x^6\right)^4.\left(\frac{1}{4}y^9\right)^4.16^4}-64=12\sqrt[12]{x^{24}y^{36}}-64=12x^2y^3-64\)
\(\Rightarrow\frac{x^6+y^9}{4}\ge\frac{12x^2y^3-64}{4}=3x^2y^3-16\)
Đẳng thức xảy ra \(\Leftrightarrow\) \(\frac{1}{4}x^6=\frac{1}{4}y^9=16\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=2\\y=\sqrt[9]{64}\end{cases}}\)