Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(A=a^3-a-6a^2-6a+12=a\left(a-1\right)\left(a+1\right)-6\left(a^2-a-2\right)\)
do a là số nguyên nên \(â\left(a-1\right)\left(a+1\right)\)chia hết cho 6
mà hiển nhiên \(-6\left(a^2-a-2\right)\)chia hết cho 6
vậy A chia hết cho 6
đố bạn làm được câu này cho m thuộc N. cmr 5m^3+40m chia hết cho 15
a) Ta có \(A=a^3-6a^2-7a+12=\left(a-1\right)\left(a^2-5a+12\right)=\left(a-1\right)\left(a^2-5a+6\right)+6\left(a-1\right)\)
=\(\left(a-1\right)\left(a-2\right)\left(a-3\right)+6\left(a-1\right)\)
Mà (a-1)(a-2)(a-3) là tích 3 số nguyên liên tiếp => cúng chia hết cho 6 => ... chia hết cho 6(ĐPCM)
^_^
\(b,n^2\left(n^4-1\right)\)
\(=n^2\left(n^2+1\right)\left(n^2-1\right)\)
Ta có:\(n^2-1;n^2;n^2+1\) là 3 số nghuyên liên tiếp
\(\Rightarrow n^2\left(n^2+1\right)\left(n^2-1\right)⋮60\)
\(\Rightarrowđpcm\)
=>
\(M=a^4+6a^3+11a^2+6a+24a\) 24.a chia hết cho 24 ta cần c/m
\(a^4+6a^3+11a^2+6a\) chia hết cho 24
\(a^4+6a^3+11a^2+6a=a\left(a^3+6a^2+11a+6\right)=\)
\(=a\left(a+1\right)\left(a^2+5a+6\right)=a\left(a+1\right)\left(a+2\right)\left(a+3\right)\)
Ta nhận thấy đây là tích của 4 số TN liên tiếp
Trong 4 số TN liên tiếp thì có 2 số chẵn liên tiếp 1 số chia hết cho 2 và 1 số chia hết cho 4 nên tích của chúng chia hết cho 8
Trong 4 số tự nhiên liên tiếp thì chắc chắn có 1 số chia hết cho 3
=> tích của 4 số TN liên tiếp chia hết cho 3x8=24
Nên \(a^4+6a^3+11a^2+6a⋮24\Rightarrow M⋮24\)
Giả sử \(x;y⋮̸3\)
\(\Rightarrow x^2;y^2\) chia 3 dư 1
\(\Rightarrow z^2=x^2+y^2\) chia 3 dư 2 ( vô lý vì z^2 là số chính phương )
Vậy \(\left[{}\begin{matrix}x⋮3\\y⋮3\end{matrix}\right.\Rightarrow xy⋮3\)
Chứng minh tương tự \(xy⋮4\)
(3;4)=1 => x.y chia hết cho 12
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
\(A=a^3-6a^2-7a+12\)
\(=\left(a^3-a\right)-6a^2-6a+12\)
\(=a\left(a^2-1\right)-6\left(a^2+a-2\right)\)
\(=\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\)
Ta thấy \(\left(a-1\right)a\left(a+1\right)\) là tích 3 số nguyên liên tiếp nên \(\left(a-1\right)a\left(a+1\right)⋮2;3\)
Mà \(ƯCLN\left(2;3\right)=1\Rightarrow\left(a-1\right)a\left(a+1\right)⋮6\)(1)
Lại có \(6\left(a^2+a-2\right)⋮6\forall a\in Z\)(2)
Từ (1);(2) \(\Rightarrow\left[\left(a-1\right)a\left(a+1\right)-6\left(a^2+a-2\right)\right]⋮6\forall a\in Z\)
Hay \(A⋮6\forall a\in Z\)(đpcm)