Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
8^5+2^11
=(2^3)^5+2^11
=2^15+2^11
=2^11(1+2^4)
=2^11.17
Vì: 2^11.17 có thừa số 17 nên chia hết cho 17 (đpcm)
\(8^5+2^{11}=2^{15}+2^{11}\)
\(=2^{11}.2^4+2^{11}.1\)
\(=2^{11}.\left(16+1\right)\)
\(=2^{11}.17\)
a: \(=35^{2018}\left(35-1\right)=35^{2018}\cdot34⋮17\)
b: \(=43^{2018}\left(43+1\right)=43^{2018}\cdot44⋮11\)
d: \(=6mn-4m-9n+6-6mn+9m+4n-6\)
=5m-5n=5(m-n) chia hết cho 5
a)Đặt \(A=8^5+2^{11}\)
\(A=\left(2^3\right)^5+2^{11}\)
\(A=2^{15}+2^{11}\)
\(A=2^{11}\left(2^4+1\right)\)
\(A=2^{11}\cdot17⋮17\left(đpcm\right)\)
\(a;43^2+43.17=43\left(43+17\right)=43.60⋮60\left(đpcm\right)\)
\(b;27^5-3^{11}=3^{15}-3^{11}=3^{11}\left(3^4-1\right)=3^{11}.80⋮80\left(đpcm\right)\)
a, 11n+2+122n+1
= 11n.121+12.122n
= 11n.(133-12)+12.122n
= 11n.133-11nn .12+12.122n
=12.(144n-11n)+11n. 133
Có 144nn-11n \(⋮\)144-11=133
11n.133\(⋮\)133
=> dpcm
a) 85+211
=(23)5+211=215+211
=211(24+1)
=211.17 (chia hết cho 17 )
Vậy 85+211 chia hết cho 17
b)Ta có a^n + b^n
=(a+b)[a^(n-1) - a^(n-2).b + a^(n-3).b^2 - ......+b^(n-1) với n lẻ
19^19 + 69^19
= (19+69)( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
19^19 + 69^19 = 88.( 19^18 - 19^17.69 + 19^16.69^2 -..... + 69^18)
do 88 chia hết cho 44 => 19^19 + 69^19 chia hết cho 44
\(8^5+2^{11}=\left(2^{11}\right)^4+2^{11}=2^{11}.\left(2^4+1\right)=17.2^{11}⋮17\left(đpcm\right)\)