K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2021

Ta có : \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}\)

=> \(\frac{a^3}{b^3}=\frac{b^3}{c^3}=\frac{c^3}{d^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a^3}{b^3}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

=> \(\frac{a}{d}=\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)

24 tháng 10 2021

Cảm ơn bạn Xyz nhiều

22 tháng 9 2019

Ta có a/c=c/b=b/d

⟹a3 /c3=c3/b3=b3/d3=a3+c3-d3/c3+b3-d3

mà a3/c3=a/c.c/b.b/d=a/d

⟹a3+c3-d3/c3+b3-d3=a/d

2 tháng 8 2015

giúp mình với nha các bạn

20 tháng 2 2018

\(b^2\)\(ac\)=> \(\frac{a}{b}\)\(\frac{b}{c}\)(1)

\(c^2\)\(bd\)=> \(\frac{b}{c}\)\(\frac{c}{d}\)(2)

từ (1) và (2) => \(\frac{a}{b}\)\(\frac{b}{c}\)\(\frac{c}{d}\)=> \(\frac{a^3}{b^3}\)\(\frac{c^3}{d^3}\)\(\frac{b^3}{c^3}\)=> \(\frac{a^3}{b^3}\)\(\frac{a}{b}\)*   \(\frac{b}{c}\)*   \(\frac{c}{d}\)\(\frac{a}{d}\)         (*)

\(\frac{a^3}{b^3}\)=   \(\frac{b^3}{c^3}\)=  \(\frac{c^3}{d^3}\)=   \(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)            (**)

Từ (*) và (**) => \(\frac{a}{d}\)\(\frac{a^3+b^3+c^3}{b^3+c^3+d^3}\)  (đpcm)

14 tháng 12 2017

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Đặt: \(\dfrac{a}{c}=\dfrac{b}{d}=t\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\left(\dfrac{a+b}{c+d}\right)^3=t^3\)

\(\dfrac{a^3}{c^3}=\dfrac{b^3}{d^3}=\dfrac{a^3-b^3}{c^3-d^3}=t^3\)

Ta có đpcm