Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. Gọi ƯCLN (a,c) =k, ta có : a=ka1, c=kc1 và (a1,c1)=1
Thay vào ab=cd được ka1b=bc1d nên
a1b=c1d (1)
Ta có: a1b \(⋮\)c1 mà (a1,c1)=1 nên b\(⋮\)c1. Đặt b=c1m ( \(m\in N\)*) , thay vào (1) được a1c1m = c1d nên a1m=d
Do đó: \(a^5+b^5+c^5+d^5=k^5a_1^5+c_1^5m^5+k^5c_1^5+a_1^5m^5\)
\(=k^5\left(a_1^5+c_1^5\right)+m^5\left(a_1^5+c_1^5\right)=\left(a_1^5+c_1^5\right)\left(k^5+m^5\right)\)
Do a1, c1, k, m là các số nguyên dương nên \(a^5+b^5+c^5+d^5\)là hợp số (đpcm)
2. Nhận xét: 1 số chính phương khi chia cho 3 chỉ có thể sư 0 hoặc 1.
Ta có \(a^2+b^2⋮3\). Xét các TH của tổng 2 số dư : 0+0, 0+1,1+1, chỉ có 0+0 \(⋮\)3.
Vậy \(a^2+b^2⋮3\)thì a và b \(⋮3\)
b) Nhận xét: 1 số chính phương khi chia cho 7 chỉ có thể dư 0,1,2,4 (thật vậy, xét a lần lượt bằng 7k, \(7k\pm1,7k\pm2,7k\pm3\)thì a2 chia cho 7 thứ tự dư 0,1,4,2)
Ta có: \(a^2+b^2⋮7\). Xét các TH của tổng 2 số dư : 0+0, 0+1, 0+2, 0+4 , 1+1, 1+2, 2+2, 1+4, 2+4, 4+4; chỉ có 0+0 \(⋮7\). Vậy......
1: Vì 7 là số nguyên tố nên \(n^7-n⋮7\)
2: \(A=n^3+11n\)
\(=n^3-n+12n\)
\(=n\left(n-1\right)\left(n+1\right)+12n⋮6\)
3: \(=n\left(n^2+3n+2\right)=n\left(n+1\right)\left(n+2\right)⋮6\)
ta có :
\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của ba số nguyên liên tiếp nên \(a^3-a\text{ chia hết cho 6}\)
ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
ta có tích trên chia hết cho 6 do chứng minh ở ý trên, ta cần chỉ ra nó chia hết cho 5 nữa.
thật vậy: nếu a=5q hoặc a=5q+1 hoặc a=5q+4 thì a(a-1)(a+1) chia hết cho 5
nếu a=5q+2 hoặc a=5q+3 thì \(a^2+1\text{ chia hết cho 5}\)
vậy \(a^5-a\text{ chia hết cho 30}\)
Ta có a3 - a = a(a2 - 1) = (a - 1)a(a + 1) \(⋮6\)(tích 3 số nguyên liên tiếp)
Ta có a5 - a = a(a4 - 1) = a(a2 - 1)(a2 + 1) = (a - 1)a(a + 1)(a2 + 1)
= (a - 1)a(a + 1)(a2 - 4 + 5)
= (a - 1)a(a + 1)(a2 - 4) + 5(a - 1)a(a + 1)
= (a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1)
Nhận thấy (a - 1)a(a + 1) \(⋮\)6
=> 5(a - 1)a(a + 1) \(⋮\)30
Lại có (a - 2)(a - 1)a(a + 1)(a + 2) \(⋮30\)(tích 5 số nguyên liên tiếp)
=> a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1) \(⋮\)30
=> a5 - a \(⋮30\)
b) ta có: 30=2.3.5
\(a^2\equiv a\left(mod2\right)\Rightarrow a^4\equiv a^2\equiv a\left(mod2\right)\)
\(\Rightarrow\hept{\begin{cases}a^5\equiv a^2\equiv a\left(mod2\right)\\b^3\equiv b\left(mod3\right)\\c^5\equiv c\left(mod5\right)\end{cases}\Rightarrow b^5\equiv b^3\equiv b\left(mod3\right)}\)
\(\Rightarrow a^5+b^5+c^5\equiv a+b+c\left(mod2.3.5\right)\)
\(a^2+b^2+c^2=\left(a+b+c\right)+\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
\(=\left(a+b+c\right)+a\left(a^2-1\right)+b\left(b^2-1\right)+c\left(c^2-1\right)\)
\(=\left(a+b+c\right)+\left(a-1\right)\left(a+1\right)+\left(b-1\right)\left(b+1\right)+\left(c-1\right)\left(c+1\right)\)
\(mà\)\(a\left(a-1\right)\left(a+1\right)⋮6\)
\(b\left(b-1\right)\left(b+1\right)⋮6\)
\(c\left(c-1\right)\left(c+1\right)⋮6\)
\(a+b+c⋮6\)
\(\Leftrightarrow(a^3+b^3+c^3)⋮6\)\((đpcm)\)
dễ mà cô nương
\(a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)\)
\(\left(a^2+ab+b^2\right)=\left\{\left(a+b\right)^2-ab\right\}\)
\(a^3-b^3=\left(a-b\right)\left(25-6\right)=19\left(a-b\right)\)
ta có
\(a=-5-b\)
suy ra
\(a^3-b^3=19\left(-5-2b\right)\) " xong "
2, trên mạng đầy
3, dytt mọe mày ngu ab=6 thì cmm nó phải chia hết cho 6 chứ :)
4 . \(x^2-\frac{2.1}{2}x+\frac{1}{4}+\frac{1}{3}-\frac{1}{4}>0\) tự làm dcmm
5. trên mạng đầy
6 , trên mang jđầy
a) \(a^2-a=a\left(a-1\right)⋮2\) ( Tích 2 số nguyên liên tiếp ⋮ 2 )
b) \(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)⋮3\)( Tích 3 số nguyên liên tiếp ⋮ 3)
c) \(a^5-a=a\left(a^4-1\right)=a\left(a^2-1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+5-4\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)\)
Ta có:
\(a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\) tích 5 số nguyên liên tiếp ⋮ 5
5a (a-1)(a+1) ⋮ 5
Suy ra: a5 - a ⋮ 5
Câu d : Ta có :
\(a^7-a\)
\(=a\left(a^6-1\right)\)
\(=a\left(a^3-1\right)\left(a^3+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+a+1\right)\left(a^2-a+1\right)\)
Nếu : \(a=7k\) thì \(a\) chia hết cho 7
Nếu : \(a=7k-1\) thì \(a+1\) chia hết cho 7
Nếu : \(a=7k+1\) thì \(a-1\) chia hết cho 7
Nếu : \(a=7k+2\) thì \(a^2+a+1=49k^2+35k+7\) chia hết cho 7
Nếu : \(a=7k+3\) thì \(a^2-a+1=49k^2+35k+7\) chia hết cho 7
Vì mọi trường hợp đều chia hết cho 7 .
\(\Rightarrow a^7-a⋮7\left(đpcm\right)\)