K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 8 2016

Ta biết một số chính phương hoặc chia hết cho 3 hoặc chia 3 dư 1 
(3k)² = 9k² chia hết cho 3 
(3k+1)² = 9k² + 6k + 1 chia 3 dư 1 
(3k+2)² = 9k² + 12k + 3 + 1 chia 3 dư 1 
----------- 
A = a^2k + (a+1)^2m + (a+2)^2n = (a²)^k + ((a+1)²)^m + ((a+2)²)^n 

a, a+1, a+2 là 3 số nguyên liên tiếp nên có đúng 1 số chia hết cho 3, 1 số chia 3 dư 1, 1 số chia 3 dư 2 

=> a², (a+1)², (a+2)² có một số chia hết cho 3, 2 số chia 3 dư 1 

=> (a²)^k, ((a+1)²)^m và ((a+2)²)^n có 1 số chia hết cho 3, 2 số chia 3 dư 1 

=> A = (a²)^k + ((a+1)²)^m + ((a+2)²)^n chia 3 dư 2 không thể là số chính phương b² 
(vì b² chia 3 dư 0 hoặc 1) 

22 tháng 12 2017

hu hu.. ! lần này mình tự làm nếu còn giống của bạn nào thì đừng bảo mình coppy nhé ! cai nay tu minh biet nen minh tu lam day !

Gọi 3 số nguyên liên tiếp lần lượt là (a - 1), a, (a + 1) 
chứng minh: (a - 1)^3 + a^3 + (a + 1)^3 chia hết cho 9 
=>(a - 1)^3 + a^3 + (a + 1)^3=a^3 - 3a^2 + 3a - 1 + a^3 + a^3 + 3a^2 + 3a +1 = 3a^3 + 6a 
= >3a(a^2 + 2) = 3a(a^2 - 1) + 9a 
= >3(a - 1)a(a + 1) + 9a 
ta da biet tíck của 3 sô tự nhiên liên tiếp chia hhết cho 3 nên 3(a - 1)a(a + 1) chia hết cho 9 
Mặt khác 9a chia hết cho 9 nên 
=>3(a - 1)a(a + 1) + 9a 
hay ta dc điều phải chứng minh 

a) Từ giả thiếtta có thể đặt : \(n^2-1=3m\left(m+1\right)\)với m là 1 số nguyên dương

Biến đổi phương trình ta có : 

\(\left(2n-1;2n+1\right)=1\)nên dẫn đến :

TH1 : \(2n-1=3u^2;2n+1=v^2\)

TH2 : \(2n-1=u^2;2n+1=3v^2\)

TH1 :

\(\Rightarrow v^2-3u^2=2\)

\(\Rightarrow v^2\equiv2\left(mod3\right)\)( vô lí )

Còn lại TH2 cho ta \(2n-1\)là số chính phương

b) Ta có : 

\(\frac{n^2-1}{3}=k\left(k+1\right)\left(k\in N\right)\)

\(\Leftrightarrow n^2=3k^2+3k+1\)

\(\Leftrightarrow4n^2-1=12k^2+12k+3\)

\(\Leftrightarrow\left(2n-1\right)\left(2n+1\right)=3\left(2k+1\right)^2\)

- Xét 2 trường hợp :

TH1 : \(\hept{\begin{cases}2n-1=3p^2\\2n+1=q^2\end{cases}}\)

TH2 : \(\hept{\begin{cases}2n-1=p^2\\2n+1=3q^2\end{cases}}\)

+) TH1 :

Hệ \(PT\Leftrightarrow q^2=3p^2+2\equiv2\left(mod3\right)\)( loại, vì số chính phương chia 3 dư 0 hoặc 1 )

+) TH2 :

Hệ \(PT\Leftrightarrow p=2a+1\Rightarrow2n=\left(2a+1\right)^2+1\Rightarrow n^2=a^2+\left(a+1\right)^2\)( đpcm )

13 tháng 4 2021

Cho mình hỏi ở chỗ câu b): Vì sao 2n-1=3p^2 và 2n+1=q^2 vậy ạ?

Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư...
Đọc tiếp

Chỉ biết mấy cái sau về đặc điểm của số chính phương mà không biết chứng minh . Các bạn giúp mình chứng minh nhé .

  • Số chính phương không bao giờ tận cùng là 2, 3, 7, 8.
  • Khi phân tích 1 số chính phương ra thừa số nguyên tố ta được các thừa số là lũy thừa của số nguyên tố với số mũ chẵn.
  • Số chính phương chia cho 4 hoặc 3 không bao giờ có số dư là 2; số chính phương lẻ khi chia 8 luôn dư 1.
  • Công thức để tính hiệu của hai số chính phương: a^2-b^2=(a+b)x(a-b).
  • Số ước nguyên duơng của số chính phương là một số lẻ.
  • Số chính phương chia hết cho số nguyên tố p thì chia hết cho p^2.
  • Tất cả các số chính phương có thể viết thành dãy tổng của các số lẻ tăng dần từ 1: 1, 1 + 3, 1 + 3 + 5, 1 + 3 + 5 +7, 1 + 3 + 5 +7 +9 v.v...
2
21 tháng 11 2015

1.Vì số chính phương bằng bình phương của một số tự nhiên nên có thể thấy ngay số chính phương phải có chữ số tận cùng là một trong các chữ số 0 ; 1 ; 4 ; 5 ; 6 ; 9

2. 

Một số chính phương được gọi là số chính phương chẵn nếu nó là bình phương của một số chẵn, là số chính phương lẻ nếu nó là bình phương của một số lẻ. (Nói một cách khác, bình phương của một số chẵn là một số chẵn, bình phương của một số lẻ là một số lẻ)

 

 

                                                                          

21 tháng 11 2015

chưa hẳn số chính phương bao giờ cũng TC = các chữ số đó đâu

VD: 21 không là số chính phương

81=92 là số chính phương

11 tháng 9 2021

Đặt \(S=36^n-6\)

+Với n=1 => \(S=30=5.6\)thỏa mãn điều kiện đề bài

+Với n>1 :Ta thấy S chia hết cho 5 và 6 và không chia hết cho 4

=> \(S=5\cdot6\cdot.........\)

Do vậy để thỏa mãn đề bài thì S phải chia hết cho 7

Mà \(36^n=\left(6^n\right)^2\)chia 7  luôn dư 0,1,2,3,4

nên S không chia hết cho 7

=> với n>1 thì không có giá trị nào của n thỏa mãn đề bài

Vậy n=1 là giá trị duy nhất thỏa mãn đề bài