Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(A=\dfrac{-\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}+3}-\dfrac{\left(\sqrt{x}-3\right)^2}{\sqrt{x}-3}-6\)
\(=-\sqrt{x}+3-\sqrt{x}+3-6=-2\sqrt{x}\)
b: \(\left(\dfrac{2\sqrt{x}}{x\sqrt{x}+x+\sqrt{x}+1}-\dfrac{1}{\sqrt{x}+1}\right):\left(\dfrac{2\sqrt{x}}{\sqrt{x}+1}-1\right)\)
\(=\left(\dfrac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(x+1\right)}-\dfrac{1}{\sqrt{x}+1}\right):\dfrac{2\sqrt{x}-\sqrt{x}-1}{\sqrt{x}+1}\)
\(=\dfrac{2\sqrt{x}-x-1}{\left(\sqrt{x}+1\right)\left(x+1\right)}\cdot\dfrac{\sqrt{x}+1}{\sqrt{x}-1}=\dfrac{1}{x+1}\)
g: \(\left(\dfrac{1}{\sqrt{x}-1}+\dfrac{1}{\sqrt{x}+1}\right)\left(\dfrac{x-1}{\sqrt{x}+1}-2\right)\)
\(=\dfrac{\sqrt{x}+1+\sqrt{x}-1}{x-1}\cdot\left(\sqrt{x}-1-2\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{x-1}\)
4 , Ta có :
\(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{2\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x-9}{x-9}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{x-9}+\dfrac{2\sqrt{x}\left(\sqrt{x}+3\right)}{x-9}-\dfrac{3\left(x-3\right)}{x-9}\)
\(=\dfrac{x-3\sqrt{x}+2x+6\sqrt{x}-3x+9}{x-9}\)
\(=\dfrac{3\sqrt{x}+9}{x-9}\)
\(=\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{3}{\sqrt{x}-3}\)
2 , Ta có :
\(\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x-1}{\sqrt{x}+1}=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
\(=\dfrac{x\sqrt{x}+1}{x-1}-\dfrac{x\sqrt{x}-x-\sqrt{x}+1}{x-1}\)
\(=\dfrac{x\sqrt{x}+1-x\sqrt{x}+x+\sqrt{x}-1}{x-1}=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a)\(=4\sqrt{6}-3\sqrt{6}+1-\sqrt{6}\)
\(=1\)
b)ĐK: \(x>0,x\ne9\)
\(=\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)-x-9}{x-9}\right):\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{3\sqrt{x}-9}{\sqrt{x}+3}.\dfrac{\sqrt{x}}{2\sqrt{x}+4}\)
\(=\dfrac{3\sqrt{x}\left(\sqrt{x}-3\right)}{2\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)}\)
\(a,\dfrac{x+2\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{x+3\sqrt{x}-\sqrt{x}-3}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+3\right)-\left(\sqrt{x}+3\right)}{\sqrt{x}-1}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
\(\Rightarrow\sqrt{x}+3\)
\(b,\dfrac{4y+3\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{4y+7\sqrt{y}-4\sqrt{y}-7}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\sqrt{y}.\left(4\sqrt{y}\right)-\left(4\sqrt{y}+7\right)}{4\sqrt{y}+7}\)
\(\Leftrightarrow\dfrac{\left(4\sqrt{y}+7\right).\left(\sqrt{y}-1\right)}{4\sqrt{y}+7}\)
\(\Rightarrow\sqrt{y}-1\)
\(c,\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)
\(\Leftrightarrow\dfrac{\sqrt{xy}.\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{x}-\sqrt{y}}\)
\(\Rightarrow\sqrt{xy}\)
\(d,\dfrac{x-3\sqrt{x}-4}{x-\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{x+\sqrt{x}-4\sqrt{x}-4}{x+3\sqrt{x}-4\sqrt{x}-12}\)
\(\Leftrightarrow\dfrac{\sqrt{x}.\left(\sqrt{x}+1\right)-4\left(\sqrt{x}+1\right)}{\sqrt{x}.\left(x+3\right)-4\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{\left(\sqrt{x}+1\right).\left(\sqrt{x}-4\right)}{\left(\sqrt{x}+3\right).\left(\sqrt{x}-4\right)}\)
\(\Leftrightarrow\dfrac{\sqrt{x}+1}{\sqrt{x}+3}\)
\(\Rightarrow\dfrac{x-2\sqrt{x}-3}{x-9}\)
\(e,\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+\sqrt{4}}\)
\(\Leftrightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{1+2}\)
\(\Rightarrow\dfrac{1+\sqrt{x}+\sqrt{y}+\sqrt{xy}}{3}\)
\(A=\left(\dfrac{3\sqrt{x}}{\sqrt{x}+3}+\dfrac{3\sqrt{x}}{x-9}\right):\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{3x-9\sqrt{x}+3\sqrt{x}}{x-9}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{3x-6\sqrt{x}}{\sqrt{x}+3}\cdot\dfrac{1}{\sqrt{x}+1}\)
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
\(P=\left(\dfrac{x}{\sqrt{x}+3}-\dfrac{x+1}{\sqrt{x}-3}+\dfrac{6x+\sqrt{x}}{x-9}\right):\left(\dfrac{\sqrt{x}-3}{\sqrt{x}+3}-1\right)\)
\(P=\dfrac{x\left(\sqrt{x}-3\right)-\left(x+1\right)\left(\sqrt{x}+3\right)+6x+\sqrt{x}}{x-9}:\dfrac{\left(\sqrt{x}-3\right)^2-x+9}{x-9}\)
\(P=\dfrac{x\sqrt{x}-3x-x\sqrt{x}-3x-\sqrt{x}-3+6x+\sqrt{x}}{x-9}:\dfrac{x-6\sqrt{x}+9-x+9}{x-9}\)
\(P=-\dfrac{3}{x-9}:\dfrac{-6\sqrt{x}+18}{x-9}=-\dfrac{3}{x-9}.\dfrac{x-9}{-6\left(\sqrt{x}-3\right)}\)
\(P=\dfrac{1}{2\sqrt{x}-6}\)
b. \(x=12+6\sqrt{3}=9+2.3.\sqrt{3}+3=\left(3+\sqrt{3}\right)^2\Rightarrow\sqrt{x}=3+\sqrt{3}\)
\(P=\dfrac{1}{2.3+2\sqrt{3}-6}=\dfrac{1}{2\sqrt{3}}=\dfrac{\sqrt{3}}{6}\)
a: \(=\dfrac{x-3\sqrt{x}-x-9}{x-9}:\dfrac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\dfrac{-3\left(\sqrt{x}+3\right)}{x-9}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\dfrac{-3\sqrt{x}}{2\sqrt{x}+4}\)
b: Để A>-1 thì A+1>0
=>\(-3\sqrt{x}+2\sqrt{x}+4>0\)
=>-căn x>-4
=>0<x<16
E = \(\dfrac{x+2\sqrt{x}+1}{\sqrt{x}+1}+\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\) = \(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}+\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\)
E = \(\sqrt{x}+1+\sqrt{x}\) = \(2\sqrt{x}+1\)
F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}-\dfrac{\sqrt{x}+1}{3-\sqrt{x}}-\dfrac{3-11\sqrt{x}}{x-9}\)
F = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{3-11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)-\left(3-11\sqrt{x}\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}+\sqrt{x}+3-3+11\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
F = \(\dfrac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\) = \(\dfrac{3\sqrt{x}}{\sqrt{x}-3}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}+\dfrac{4\sqrt{x}-4}{4-x}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{x-4}\)
G = \(\dfrac{\sqrt{x}+3}{\sqrt{x}-2}-\dfrac{\sqrt{x}-1}{\sqrt{x}+2}-\dfrac{4\sqrt{x}-4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{\left(\sqrt{x}+3\right)\left(\sqrt{x}+2\right)-\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{x+2\sqrt{x}+3\sqrt{x}+6-\left(x-2\sqrt{x}-\sqrt{x}+2\right)-\left(4\sqrt{x}-4\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{x+5\sqrt{x}+6-x+2\sqrt{x}+\sqrt{x}-2-4\sqrt{x}+4}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
G = \(\dfrac{4\sqrt{x}+8}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\) = \(\dfrac{4}{\sqrt{x}-2}\)
\(VT=\left(\dfrac{\sqrt{x}}{\sqrt{x}+3}+\dfrac{3}{\sqrt{x}-3}\right).\dfrac{\sqrt{x}+3}{x+9}\\ =\left(\dfrac{\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\right).\dfrac{\sqrt{x}+3}{x+9}\\ =\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}+3}{x+9}\\ =\dfrac{x+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}+3}{x+9}\\ =\dfrac{1}{\sqrt{x}-3}=VP\)
\(VT=\dfrac{x-3\sqrt{x}+3\sqrt{x}+9}{x-9}\cdot\dfrac{\sqrt{x}+3}{x+9}\)
\(=\dfrac{x+9}{x+9}\cdot\dfrac{1}{\sqrt{x}-3}=\dfrac{1}{\sqrt{x}-3}=VP\)