\(A=-x^2+2x-2< 0\) 0  vs mọi x.

b) Tìm giá trị lớn nhất của A

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2018

Ta có: \(A=-x^2+2x-2=-x^2+2x-1-1=-\left(x^2-2x+1\right)-1\)

\(=-\left(x-1\right)^2-1\)

Vì:\(-\left(x-1\right)^2\le0\forall x\)

\(\Rightarrow-\left(x-1\right)^2-1\le-1< 0\forall x\)

28 tháng 11 2018

a,\(A=-\left(x-1\right)^2-1\le-1\forall x\)

dấu = xảy ra khi : \(-\left(x-1\right)^2=0\Rightarrow x=1\)

Vậy Max A = -1 tại x= 1

6 tháng 10 2018

a) Ta có \(2x^2-8x+13=2x^2-8x+8+5\)

\(=2\left(x^2-4x+4\right)+5\)

\(=2\left(x-2\right)^2+5\ge5\forall x\)

6 tháng 10 2018

Giả sử trước khi làm nhé 

\(a)\)\(2x^2-8x+13>0\)

\(\Leftrightarrow\)\(4x^2-16x+26>0\)

\(\Leftrightarrow\)\(\left(4x^2-16+16\right)+10>0\)

\(\Leftrightarrow\)\(\left(2x-4\right)^2+10\ge10>0\) ( luôn đúng ) 

Vậy ... 

\(b)\)\(-2+2x-x^2< 0\)

\(\Leftrightarrow\)\(x^2-2x+2>0\)

\(\Leftrightarrow\)\(\left(x^2-2x+1\right)+1>0\)

\(\Leftrightarrow\)\(\left(x-1\right)^2+1\ge1>0\) ( luôn đúng ) 

Vậy ... 

Chúc bạn học tốt ~ 

26 tháng 4 2018

BÀI 1:

 a)   \(ĐKXĐ:\) \(\hept{\begin{cases}x-2\ne0\\x+2\ne0\end{cases}}\) \(\Leftrightarrow\)\(\hept{\begin{cases}x\ne2\\x\ne-2\end{cases}}\)

b)  \(A=\left(\frac{2}{x-2}-\frac{2}{x+2}\right).\frac{x^2+4x+4}{8}\)

\(=\left(\frac{2\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}-\frac{2\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\right).\frac{\left(x+2\right)^2}{8}\)

\(=\frac{2x+4-2x+4}{\left(x-2\right)\left(x+2\right)}.\frac{\left(x+2\right)^2}{8}\)

\(=\frac{x+2}{x-2}\)

c)  \(A=0\)  \(\Rightarrow\)\(\frac{x+2}{x-2}=0\)

                      \(\Leftrightarrow\) \(x+2=0\)

                      \(\Leftrightarrow\)\(x=-2\) (loại vì ko thỏa mãn ĐKXĐ)

Vậy ko tìm đc  x   để  A = 0

p/s:  bn đăng từng bài ra đc ko, mk lm cho

26 tháng 4 2018

giải nhanh giúp mik nha mn:)

24 tháng 6 2017

Phân thức đại số

12 tháng 9 2018

1)

\(A=x^2-4xy+4y^2+3\)

\(=\left(x^2-4xy+4y^2\right)+3\)

\(=\left(x-2y\right)^2+3\ge3>0\) với mọi x,y

Vậy A > 0 với mọi x,y

2)

\(B=2x-2x^2-1\)

\(=-2\left(x^2-x+\dfrac{1}{2}\right)\)

\(=-2\left[\left(x^2-2.x.\dfrac{1}{2}+\left(\dfrac{1}{4}\right)\right)-\dfrac{1}{4}+\dfrac{1}{2}\right]\)

\(=-2\left[\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\right]\)

\(=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{1}{2}\le-\dfrac{1}{2}< 0\) với mọi x,y

Vậy B < 0 với mọi x,y

6 tháng 12 2021

toán này là toán lớp 9 mà