K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 1 2017

\(x+\left|x\right|=0\Leftrightarrow\left|x\right|=-x\)

Mà |x| >/ 0 

\(\Rightarrow x\le0\)

1 tháng 5 2017

Nếu x \(\le0\) thì \(\left|x\right|=-x\)

\(\Rightarrow x+\left|x\right|=x-x=0\)

Vậy với mọi số \(x\le0\) đều nghiệm đúng phương trình .

1 tháng 5 2017

Theo đề bài ta có:

x + |x| = 0 và x \(\le0\)

=> |x| = x; -x + x = 0 và x + x \(\ne\) 0 ngoại trừ x = 0.

Vậy với mọi x \(\le\) là nghiệm của phương trình x + |x| = 0.

21 tháng 1 2017

\(x+\left|x\right|=0\Leftrightarrow x=-\left|x\right|\)

\(\Leftrightarrow x=-\sqrt{x^2}\).Mà \(\sqrt{x^2}\ge0\Rightarrow x\ge0\)

Suy ra \(-\sqrt{x^2}\le0\Rightarrow x\le0\)

25 tháng 1 2020

Ta có  \(x^2-2x+2=\left(x-1\right)^2+1>0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}< 0\)

\(\Rightarrow\frac{-4}{x^2-2x+2}-5< 0\)(đúng vóiư mọi x)

12 tháng 5 2018

b) với x=2 ta có:

VT: \(2m-3\)

VP:\(2m-2-1=2m-3\)

vì VT=VP=\(2m-3\) nên phương trình \(mx-3=2m-x-1\) luôn có nghiệm x=2 đúng với mọi m\(\in R\)

12 tháng 5 2018

a) ta thấy rằng với mọi x\(\le0\) thì \(\left|x\right|=-x\)

do đó ta có VT \(x+\left|x\right|=x-x=0=VP\)

vậy phương trình luôn có nghiệm đúng với mọi x\(\le0\) (đpcm)

26 tháng 3 2018

Ta có: x ≤ 0 ⇒ |x|=−x|x|=−x

Suy ra: x+|x|=x−x=0x+|x|=x−x=0

Vậy phương trình  x+|x|=0x+|x|=0 nghiệm đúng với mọi x ≤ 0.

Ta có : x + |x| = 0 

=> |x| = -x (1)

Ta có : |x| = x 

<=> \(\orbr{\begin{cases}\left|x\right|=x\left(x\ge0\right)\\\left|x\right|=-x\left(x\le0\right)\end{cases}}\) (2)

Từ (1) và (2) => phương trình có nghiệm x ≤ 0 (đpcm)

21 tháng 4 2017

Phương trình x + 1 = 1 + x nghiệm đúng với mọi x thuộc R nên tập nghiệm của phương trình x + 1 = 1 + x là S = {x R}

18 tháng 1 2018

Vì phương trình nghiệm đúng với mọi x nên tập nghiệm của nó là S = R.

16 tháng 8 2018

x ≤ 0 ⇒ |x| = -x

Suy ra: x + |x| = x – x = 0

Vậy mọi x ≤ 0 đều là nghiệm của phương trình x + |x| = 0

GV
1 tháng 5 2017

a) Khi \(m=-4\) phương trình trở thành:

\(\left[\left(-4\right)^2+5.\left(-4\right)+4\right]x^2=-4+4\)

\(\Leftrightarrow0.x^2=0\)

Đúng với mọi x.

b) Khi \(m=-1\) phương trình trở thành:

\(\left[\left(-1\right)^2+5.\left(-1\right)+4\right]x^2=-1+4\)

\(\Leftrightarrow0.x^2=3\)

Phương trình vô nghiệm.

c) Khi \(m=-2\) phương trình trở thành:

\(\left[\left(-2\right)^2+5.\left(-2\right)+4\right]x^2=-2+4\)

\(\Leftrightarrow-2.x^2=2\)

\(\Leftrightarrow x^2=-1\)

Phương trình này cũng vô nghiệm.

Khi \(m=-3\) phương trình trở thành:

\(\left[\left(-3\right)^2+5.\left(-3\right)+4\right]x^2=-3+4\)

\(\Leftrightarrow-2x^2=1\)

\(\Leftrightarrow x^2=-\dfrac{1}{2}\)

Phương trình cũng vô nghiệm.

d) Khi \(m=0\) phương trình trở thành:

\(\left[0^2+5.0+4\right]x^2=0+4\)

\(\Leftrightarrow4x^2=4\)

\(\Leftrightarrow x^2=1\)

Phương trình có hai nghiệm là \(x=1,x=-1\).