Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
a, Ta có : \(A=\frac{x^2-2+1995}{x^2}=\frac{x^2}{x^2}-\frac{2+1995}{x^2}=1-\frac{1997}{x^2}\)
\(A\text{ đạt GTNN khi }\frac{1997}{x^2}\text{ đạt GTLN}\)
\(\Rightarrow\text{ }x^2\text{ nhỏ nhất }\left(x\ne0\right)\) Mà \(x^2\ge0\text{ }\Rightarrow\text{ }x^2=1\text{ }\Rightarrow\text{ }x\in\left\{\pm1\right\}\)
\(\Rightarrow\text{ Min A }=1-\frac{1997}{1}=1-1997=-1996\)
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Ta có 02 = (x + y + z)2 = x2 + y2 + z2 + 2(xy + yz + zx) = x2 + y2 + z2 + 2.0
=> x2 + y2 + z2 = 0 <=> z = y = z = 0
=> S = (0 - 1)1995 + 01996 + (0 + 1)1997 = -1 + 1 = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
Vì xy + yz + xz = 0 nên 2 (xy + yz + xz) = 0
Vì x + y + z = 0 nên (x+y+z)^2 =0
suy ra x^2 + y^2 + z^2 + 2 (xy+yz+xz) = 0
suy ra x^2 + y^2 + z^2 = 0
suy ra x = y = z = 0
Thay vào S, ta được:
S = (0-1)^1995 + 0^1996 + (z+1)^1997 = (-1) + 0 + 1 = 0
Vậy S = 0
1) A=19952-1994.1996
=19952-(1995-1)(1995+1)
=19952-(19952-1)
=1
2) B=98.28-(184-1)(184+1)
=(9.2)8-[(184)2-1]
= 188-188+1
=1
3) C=1632+74.163+372
=1632+2.37.163+372
=1632+2.163.37+372
=(163+37)2.2
=80000
\(a^5-a=a\left(a^4-1\right)=a\left(a^2+1\right)\left(a^2-1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a^2-4+5\right)=a\left(a-1\right)\left(a+1\right)\left(a^2-4\right)+5a\left(a-1\right)\left(a+1\right)\)
\(=a\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)+5a\left(a-1\right)\left(a+1\right)⋮5\)
a) \(2000^2-1995\left(2000+5\right)\)
\(=2000^2-2000\left(2000+5\right)+5\left(2000+5\right)\)
\(=2000^2-2000^2-10000+10000+25\)
\(=25\)
b) bó tay
làm tương tự bài kia thôi có j đâu