K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

Làm hộ 1 cái thôi , mấy cái kia làm y hệt

\(1,x^2-2\left(m-1\right)x-3-m=0\)

Có: \(\Delta'=\left(m-1\right)^2+3+m\)

            \(=m^2-2m+1+3+m\)

            \(=m^2-m+4\)

             \(=\left(m-\frac{1}{2}\right)^2+\frac{15}{4}>0\forall m\)         

=> Pt luôn có nghiệm vs mọi m

14 tháng 4 2018

Vì phương trình có 2 nghiệm x1;x2 
=> Theo vi-ét ta có 

x+ x= 2(m+1) và x1x= 2m+3 

theo bài ra ta có 

(x1 - x2)2 = 4

<=> x12 - 2x1x+ x22  = 4

<=> x12 + 2x1x+ x22 - 4x1x2 = 4

<=> (x1 + x2)2  - 4x1x2  = 4

<=> 4(m+1)2 - 4(2m+3) = 4

<=> (m+1)2 - (2m+3) = 1

<=> m2 + 2m +1 -2m -3 -1 = 0

<=> m2 - 3 = 0

<=> m2 = 3

<=> m\(=\pm\sqrt{3}\)

Vậy với m\(=\pm\sqrt{3}\) thì phương trình có hai nghiệm x1;x2 thỏa mãn (x1 - x2)2 = 4

26 tháng 3 2020

2 trường hợp

25 tháng 3 2020

\(x^4+3x^3-\left(2m-1\right)x^2-\left(3m+1\right)x+m^2+m=0\)

Để PT có 4 nghiệm phân biệt thì 

\(\Leftrightarrow\hept{\begin{cases}1\ne0\left(lđ\right)\\m^2+m\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}m\ne0\\m\ne-1\end{cases}}}\)

Vậy \(m\ne0;m\ne-1\)thì PT có 4 nghiệm phân biệt

30 tháng 3 2019

3.

30 tháng 3 2019

ấn nhầm =)

22 tháng 1 2017

Để pt có 2 nghiệm phân biệt thì:

\(\Delta=\left(3m-1\right)^2-4\left(2m^2-m\right)>0\)

\(\Leftrightarrow m^2-2m+1>0\)

\(\Leftrightarrow m\ne1\)

Theo vi-et ta có: \(\hept{\begin{cases}x_1+x_2=3m-1\\x_1x_2=2m^2-m\end{cases}}\)

Ta có: \(\left|x_1-x_2\right|-2=0\)

\(\Leftrightarrow\left|x_1-x_2\right|=2\)

\(\Leftrightarrow x^2_1-2x_1x_2+x^2_2=4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2=4\)

\(\Leftrightarrow\left(3m-1\right)^2-4\left(2m^2-m\right)=4\)

 \(\Leftrightarrow m^2-2m-3=0\)

\(\Leftrightarrow\orbr{\begin{cases}m=3\\m=-1\end{cases}}\) 

22 tháng 1 2017

Bài này không dùng vi_et đúng là dài thật: (hiểu "Tam giác" rồi chính thức gia nhập giải lớp 9 không giao luu nữa")