K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2017

phân số chưa tối giản, thay n=0, ps bằng 0, ps bằng -2

hum

14 tháng 1 2017

Gọi \(d=gcd\left(8n+2;4n-1\right)\) (chẳng cần phải là \(n^2\) làm chi)

Khi đó \(d\) là ước chung của \(8n+2\) và \(8n-2\), nên sẽ là ước của \(4\).

Lưu ý \(d\) lẻ vì \(d\) là ước của \(4n-1\).

Vậy \(d=1\). Xong nhé em!

Ghi chú: \(gcd\left(a;b\right)\) là kí hiệu quốc tế biểu diễn ước chung lớn nhất của \(a\) và \(b\).

14 tháng 1 2017

Ủa anh thấy nó hiển nhiên mà.

Trên tử không có ước nguyên tố là 2, dưới mẫu toàn ước nguyên tố 2 thì làm sao rút gọn được?

14 tháng 1 2017

hả anh ko thấy đó là điều hiển nhiên mà,

anh ko thấy trên tử ko có biến ak?

lần sau nhớ để ý nhé

15 tháng 4 2020

Gọi d là UCLN của \(3n^2+5n+1\left(and\right)8n^2+7n+1\)

\(\Rightarrow\hept{\begin{cases}3n^2+5n+1⋮d\\8n^2+7n+1⋮d\end{cases}=>8\left(3n^2+5n+1\right)-3\left(8n^2+7n+1\right)⋮d}\)

\(\Rightarrow24n^2+40n+8-24n^2-21n-3⋮d\)

\(=>19n-5⋮d\)

do 19 zà 5 là số nguyên tố =>không chia hết cho d

=>p.số tối giản 

9 tháng 1 2024

tai sao 19 va 5 la so nguyen to lai ko chia het cho d ?

21 tháng 7 2017

Gọi d là ƯCLN của 2n+3 và 2n2+4n+1,\(d\in N\ne0\)

\(\Rightarrow\hept{\begin{cases}2n+3⋮d\left(1\right)\\2n^2+4n+1⋮d\left(2\right)\end{cases}\Rightarrow\hept{\begin{cases}\left(2n+3\right)^2⋮d\\2\left(2n^2+4n+1\right)⋮d\end{cases}}}\Rightarrow\hept{\begin{cases}4n^2+12n+9⋮d\\4n^2+8n+2⋮d\end{cases}}\)

\(\Rightarrow4n^2+12n+9-4n^2-8n-2⋮d\)

\(\Rightarrow4n+7⋮d\left(1\right)\)

Từ\(2n+3⋮d\)\(\Rightarrow2\left(2n+3\right)⋮d\Rightarrow4n+6⋮d\left(2\right)\)

Từ (1) và (2) \(\Rightarrow4n+7-4n-6⋮d\Rightarrow1⋮d\Rightarrow d=1\)

Vậy...

4 tháng 11 2018

Đặt \(A=\frac{n^3-1}{n^5+n+1}\)

\(A=\frac{n^3-1^3}{n^5-n^2+n^2+n+1}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n^3-1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)+\left(n^2+n+1\right)}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left[n^2\left(n-1\right)+1\right]}\)

\(A=\frac{\left(n-1\right)\left(n^2+n+1\right)}{\left(n^2+n+1\right)\left(n^3-n^2+1\right)}\)

\(A=\frac{n-1}{n^3-n^2+1}\)

Dễ thấy n - 1 < n3 - 1; n3 - n2 + 1 < n5 + n + 1

Mà \(\frac{n^3-1}{n^5+n+1}=\frac{n-1}{n^3-n^2+1}\)

=> A có thể rút gọn 

=> A chưa tối giản ( đpcm )