Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1 : Ta có :\(x^4+2x^3+2x^2+x+6\)
\(=x^4+2x^3+x^2+x^2+x+6\)
\(=x^2\left(x+1\right)^2+\left(x+\frac{1}{2}\right)^2+\frac{23}{4}>0\)
Vì \(VT>0\) nên phương trình vô nghiệm .
Câu 2 : Ta có :
\(\left\{{}\begin{matrix}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{matrix}\right.\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\)
Mà : \(a_1^2+a_2^2\ge4\left(b_1+b_2\right)\Leftrightarrow\Delta_1+\Delta_2\ge0\)
Nên hai phương trình luôn có nghiệm
Nếu đổi +6 thành -6 thì sao vậy , bạn giúp mình với :(((
Pt1 ấy : \(x^4+2x^3+2x^2+x-6=0\)
+) Từ phương trình \({\Delta _1}:{a_1}x + {b_1}y + {c_1} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_1}} \) là \(\left( {{a_1};{b_1}} \right)\)
+) Từ phương trình \({\Delta _2}:{a_2}x + {b_2}y + {c_2} = 0\) ta xác định được tọa độ của vectơ \(\overrightarrow {{n_2}} \) là \(\left( {{a_2};{b_2}} \right)\)
+) \(\cos \left( {\overrightarrow {{n_1}} ,\overrightarrow {{n_2}} } \right) = \frac{{\overrightarrow {{n_1}} .\overrightarrow {{n_2}} }}{{\left| {\overrightarrow {{n_1}} } \right|.\left| {\overrightarrow {{n_2}} } \right|}} = \frac{{{a_1}{a_2} + {b_1}{b_2}}}{{\sqrt {{a_1}^2 + {b_1}^2} \sqrt {{a_2}^2 + {b_2}^2} }}\)
a) Các giao điểm của (E) với trục hoành có tọa độ thỏa mãn hệ phương trình
\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\y = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \pm a\\y = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{A_1}\left( { - a;0} \right)\\{A_2}\left( {a;0} \right)\end{array} \right.\)
Các giao điểm của (E) với trục tung có tọa độ thỏa mãn hệ phương trình
\(\left\{ \begin{array}{l}\frac{{{x^2}}}{{{a^2}}} + \frac{{{y^2}}}{{{b^2}}} = 1\\x = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 0\\y = \pm b\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{B_1}\left( {0; - b} \right)\\{B_2}\left( {0;b} \right)\end{array} \right.\)
Ta có \({A_1}{A_2} = 2a,{B_1}{B_2} = 2b\).
b) Do M thuộc (E) nên ta có \(\frac{{x_o^2}}{{{a^2}}} + \frac{{y_o^2}}{{{b^2}}} = 1\)
Do \(a > b > 0\) nên ta có \(\frac{{x_o^2}}{{{a^2}}} \le \frac{{x_o^2}}{{{b^2}}}\). Suy ra \(1 \le \frac{{x_o^2}}{{{b^2}}} + \frac{{y_o^2}}{{{b^2}}} \Rightarrow {b^2} \le x_o^2 + y_o^2\)
Tương tự ta có \(\frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}}\) nên \(1 \ge \frac{{y_o^2}}{{{a^2}}} \le \frac{{y_o^2}}{{{b^2}}} \Rightarrow {a^2} \ge x_o^2 + y_o^2\)
Vậy \({b^2} \le x_o^2 + y_o^2 \le {a^2}\)
Ta có \(OM = \sqrt {x_o^2 + y_o^2} \) suy ra \(b \le OM \le a\)
a: \(\Leftrightarrow\left\{{}\begin{matrix}x+3y=5\\2x-y=6\end{matrix}\right.\)=>x=23/7; y=4/7
b: \(2\cdot\overrightarrow{A}+3\cdot\overrightarrow{B}\)
\(=\left(2\cdot1+3\cdot3;2\cdot2+3\cdot\left(-1\right)\right)\)
=(11;1)
c: \(\overrightarrow{A}\cdot\overrightarrow{B}=\left(3;-2\right)\)
thử sức xíu, có sai mong bỏ qua, xie xie :3
Giả sử cả 2 pt đều vô nghiệm
\(\Rightarrow\left\{{}\begin{matrix}a_1^2-4b_1< 0\\a_2^2-4b_2< 0\end{matrix}\right.\Rightarrow a_1^2-4b_1+a_2^2-4b_2< 0\)
Có \(a_1^2+a_2^2\ge2a_1a_2\)
\(\Rightarrow a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\)
Theo gt có: \(a_1a_2-2\left(b_1+b_2\right)\ge0\)
Mà \(a_1^2+a_2^2-4\left(b_1+b_2\right)< 0\Rightarrow2a_1a_2-4\left(b_1+b_2\right)< 0\) (trái vs giả thiết)
=> Ít nhất 1 trong 2 pt có nghiệm