K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 7 2017

Ta có: \(n^3-28n=n^3-4n-24n\)

Ta xét \(n^3-4n=n\left(n^2-2^2\right)=n\left(n-2\right)\left(n+2\right)\)

Nên tồn tại ít nhất 1 số chia hết cho 2, cho 4 và cho 6 nên biểu thức trên chia hết cho : 2 . 4 . 6 =48;

Do n là số chẵn nên n có dạng là 2k , xét 24n ta có:

\(24n=24.2k=48k⋮48\)

Hai số chia hết cho 48 nên hiệu của chúng chia hết cho 48;

VẬY...

CHÚC BẠN HỌC TỐT.....

8 tháng 7 2017

thank you bạn nhé!

2 tháng 10 2020

Thử với n = 2 thì đề sai, mà hình như với mọi n chẵn thì đề sai :v 

27 tháng 2 2016

Bài 2 gọi hai số chẵn đó là 2a và 2a+2
ta có 2a(2a+2)=4a^2+4a=4a(a+1)
vì a và a+1 là hai số liên tiếp nên trong hai số này sẽ có ,ột số chia hết cho 2
Suy ra 4a(a+1)chia hết cho 8
Bài 3 n^3-3n^2-n+3=n^2(n-3)-(n-3) 
                            =(n-3)(n^2-1)
                            =(n-3)(n-1)(n+1)

Do n lẻ nên ta thay n=2k+1ta được (2k-2)2k(2k+2)=2(k-1)2k2(k+1)
                                                                         =8(k-1)k(k+1)

vì k-1,k,k+1laf ba số nguyên liên tiếp mà tích của ba số nguyên liên tiếp chia hết cho 6
8.6=48 Vậy n^3-3n^2-n+3 chia hết cho 8 với n lẻ

27 tháng 2 2016

Bài 4 n^5-5n^3+4n=n(n^4-5n^2+4)=n(n^1-1)(n^2-4)
                           =n(n+1)(n-1)(n-2)(n+2)là tích của 5 số nguyên liên tiếp 
Trong 5 số nguyên liên tiếp có ít nhất hai số là bội của 2 trong đó có một số là bội của 4
một bội của 3 một bội của 5 do đó tích của 5 số nguyên liên tiếp chia hết cho 2.3.4.5=120

21 tháng 6 2017

a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)

=a(a+1)(a+2)

Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)

mà (2;3)=1

=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)

b)Ta có:

a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a

cái này có phải đề sai k vậy bạn

21 tháng 6 2017

đúng mà bn

15 tháng 10 2019

c) \(n\left(2n-3\right)-2n\left(n+1\right)\)

\(=2n^2-3n-2n^2-2n\)

\(=-5n\)Vì n nguyên

\(\Rightarrow-5n⋮5\left(đpcm\right)\)

15 tháng 10 2019

a) \(\left(2n+3\right)^2-9\)

\(=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)\)

\(=4n\left(n+3\right)\)

Do \(n\in Z\Rightarrow n+3\in Z\)

\(\Rightarrow4n\left(n+3\right)⋮4\left(đpcm\right)\)

18 tháng 10 2015

vào câu hỏi tương tự nha

8 tháng 8 2016

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

8 tháng 8 2016

ai giải giúp mình bài 2 và bài 3 với