Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử rằng giả thiết đúng, tức là n là số lẻ.
Ta có n=2k+1 (k=0,1,2,...)
n2=(2k + 1)2=4k2+4k+1
=2(2k2+2k)+1 là lẻ.
Vậy nếu n2 là số lẻ thì n là số lẻ.
Giả sử với n2 là số lẻ mà n là số chẵn .
=> : \(n=2k\left(k\in Z\right)\)
\(\Rightarrow n^2=4k^2\)
Mà n2 lẻ
=> 4k2 lẻ (1)
Mặt khác \(k\in Z\Rightarrow4k^2\) chẵn (2)
(2) mâu thuẫn với (1)
=> Giả sử sai
=> Đpcm
Lời giải:
Dùng pp kẹp thôi:
Đặt biểu thức đã cho là $A$
Xét \(n=0\) không thỏa mãn.
Xét \(n\geq 1\)
Với \(n\in\mathbb{N}\) thì:\(A=n^4+2n^3+2n^2+n+7=(n^2+n)^2+n^2+n+7>(n^2+n)^2\)
Mặt khác, xét :
\(A-(n^2+n+2)^2=-3n^2-3n+3<0\) với mọi \(n\geq 1\)
\(\Leftrightarrow A< (n^2+n+2)^2\)
Như vậy \((n^2+n)^2< A< (n^2+n+2)^2\), suy ra để $A$ là số chính phương thì
\(A=(n^2+n+1)^2\Leftrightarrow n^4+2n^3+2n^2+n+7=(n^2+n+1)^2\)
\(\Leftrightarrow -n^2-n+6=0\Leftrightarrow (n-2)(n+3)=0\)
Suy ra \(n=2\)
1: \(125^3\ge5^x>25^2\)
\(\Leftrightarrow5^4< 5^x\le5^9\)
mà x là số nguyên
nên \(x\in\left\{5;6;7;8;9\right\}\)
2: \(16^3\cdot2\ge2^x>8^3\)
\(\Leftrightarrow2^9< 2^x\le2^{12}\cdot2=2^{13}\)
mà x là số nguyên
nên \(x\in\left\{10;11;12;13\right\}\)
3: \(27^{15}< 3^x< 81^{10}\)
\(\Leftrightarrow3^{45}< x< 3^{40}\)(vô lý)
4: \(27^3\cdot3< 3^x< 243^3\)
\(\Leftrightarrow3^{10}< 3^x< 3^{15}\)
mà x là số nguyên
nên \(x\in\left\{11;12;13;14\right\}\)
a) ta có :(2^14:1024).2^x=128
=>(2^14:2^10).2^x=2^7
=>2^4.2^x=2^7
=>2^x=2^7:2^4
=>2^x=2^3
=>x=3
b) ta có: 3^x+3^x+1+3^x+2=117
=>3^x.(1+3+3^2)=117
=>3^x.13=117
=>3^x=9=3^2
=>x=2
c)ta có 2^x+2^x+1+2^x+2+2^x+3=480
=>2^x.(1+2+2^2+2^3)=480
=>2^x.15=480
=>2^x=480:15=32=2^5
=>x=5
d) ta có: 2^3.32>=2^n>16
=>2^3.2^5>=2^>2^4
=>2^8>=2^n>2^4
=>n=8;7;6;5
còn lại tương tự
h)16^n<32^4
=>(2^4)^n<(2^5)^4
=>2^4n<2^20
=>4n<20
=>n= 0;1;2;3;4
Vì n2 là số chẵn
=> n2 chia hết cho 2
Mà 2 nguyên tố
=> n2 chia hết cho 4
=> \(n^2=4k^2\left(k\in Z\right)\)
=> \(n=2k\)
=> n là số chẵn ( đpcm )
\(n^2=2k^2\Rightarrow n=\sqrt{2k^2}=2k\)