Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì n2 là số chẵn
=> n2 chia hết cho 2
Mà 2 nguyên tố
=> n2 chia hết cho 4
=> \(n^2=4k^2\left(k\in Z\right)\)
=> \(n=2k\)
=> n là số chẵn ( đpcm )
Lời giải:
Dùng pp kẹp thôi:
Đặt biểu thức đã cho là $A$
Xét \(n=0\) không thỏa mãn.
Xét \(n\geq 1\)
Với \(n\in\mathbb{N}\) thì:\(A=n^4+2n^3+2n^2+n+7=(n^2+n)^2+n^2+n+7>(n^2+n)^2\)
Mặt khác, xét :
\(A-(n^2+n+2)^2=-3n^2-3n+3<0\) với mọi \(n\geq 1\)
\(\Leftrightarrow A< (n^2+n+2)^2\)
Như vậy \((n^2+n)^2< A< (n^2+n+2)^2\), suy ra để $A$ là số chính phương thì
\(A=(n^2+n+1)^2\Leftrightarrow n^4+2n^3+2n^2+n+7=(n^2+n+1)^2\)
\(\Leftrightarrow -n^2-n+6=0\Leftrightarrow (n-2)(n+3)=0\)
Suy ra \(n=2\)
Tìm số tự nhiên n:
Ta có: \(3^n:3^2=243\)
\(\Rightarrow3^n:3^2=3^5\)
\(\Rightarrow3^{n-2}=3^5\)
\(\Rightarrow n-2=5\)
\(\Rightarrow n=7\)
Vậy \(n=7\).
Còn câu b không có đề...
Giả sử rằng giả thiết đúng, tức là n là số lẻ.
Ta có n=2k+1 (k=0,1,2,...)
n2=(2k + 1)2=4k2+4k+1
=2(2k2+2k)+1 là lẻ.
Vậy nếu n2 là số lẻ thì n là số lẻ.
Giả sử với n2 là số lẻ mà n là số chẵn .
=> : \(n=2k\left(k\in Z\right)\)
\(\Rightarrow n^2=4k^2\)
Mà n2 lẻ
=> 4k2 lẻ (1)
Mặt khác \(k\in Z\Rightarrow4k^2\) chẵn (2)
(2) mâu thuẫn với (1)
=> Giả sử sai
=> Đpcm