\(\in\)Z;a>b ; b>0 thì \(\frac{a}{b}\)< <...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Ta có :

\(\frac{a}{b}< \frac{2015}{2013}\)

\(\Rightarrow2013a< 2015b\)

\(\Rightarrow2013a+ab< 2015b+ab\)

\(\Rightarrow a.\left(2013+b\right)< b.\left(2015+a\right)\)

\(\Rightarrow\frac{a}{b}< \frac{a+2015}{b+2013}\)

3 tháng 7 2017

Ta có :

\(\frac{a}{b}< \frac{2015}{2013}\)

\(\Rightarrow2013a< 2015b\)

\(\Rightarrow2013a+ab=2015b+ab\)

\(\Rightarrow a.\left(2013+b\right)=b.\left(2015+a\right)\)

\(\Rightarrow\frac{a}{b}=\frac{a+2015}{b+2013}\)

3 tháng 7 2017

Ta có : \(\frac{a+2014}{a-2014}=\frac{a+2015}{a-2015}\)

\(\Rightarrow\left(a+2014\right)\left(a-2015\right)=\left(a-2014\right)\left(a+2015\right)\)

\(\Rightarrow a^2-a-2014.2015=a^2+a-2014.2015\)

\(\Leftrightarrow a^2-a=a^2+a\)

=> a2 - a2 - a = a

=> -a = a

=>  0 = a + a

=> 2a = 0

=> a = 0 

Vậy \(\frac{a}{2014}=\frac{b}{2015}\) (đpcm)

26 tháng 8 2020

Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)

\(< =>ac< bc< =>a< b\)(đpcm)

Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)

\(< =>ac>bc< =>a>b\)(đpcm)

26 tháng 8 2020

1) Ta có: \(a< b\Leftrightarrow a\div b< b\div b\)

=> \(\frac{a}{b}< 1\)

2) \(a>b\Leftrightarrow a\div b>b\div b\)

=> \(\frac{a}{b}>1\)

7 tháng 7 2017

1.

Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)  (1)

Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\)  (2)

Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

2.

Ta có: a(b + n) = ab + an (1)

           b(a + n) = ab + bn (2)

Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)

Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)

Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)

Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)

Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)

15 tháng 8 2018

Ta có :  x < y mà  \(x=\frac{a}{m}\)và   \(y=\frac{b}{m}\)

\(\Rightarrow a< b\)

a<b \(\Rightarrow a+a< b+a\)

\(\text{Hay}\)\(2a< b+a\)

\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)

\(\Rightarrow z>x\)( 1)

a < b \(\Rightarrow a+b< b+b\)

Hay \(a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow z< y\)(2)

Từ (1) và (2) suy ra : x < z < y (đpcm)

15 tháng 8 2018

\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow x< z< y\)

29 tháng 8 2016

đụ mẹ bọn online math

29 tháng 8 2016
J vậy bạn
15 tháng 8 2016

Ta có : x < y => a < b (vì m > 0) => a + a < a + b => \(2a< a+b\Rightarrow a< \frac{a+b}{2}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}\) hay \(x< z\) (1)

Lại có : a < b => a + b < b + b \(\Rightarrow a+b< 2b\Rightarrow\frac{a+b}{2}< b\Rightarrow\frac{a+b}{2m}< \frac{b}{m}\) hay z < y (2)

Từ (1) và (2) ta có x<z<y

 

15 tháng 8 2016

cảm ơn bạn nha hihi