Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(abc=10ab+c⋮37\)
\(\Leftrightarrow1000ab+100c⋮37\)
\(\Leftrightarrow999ab+ab+100c⋮37\)
\(\Leftrightarrow999ab+cab⋮37\)
Mà 999 chia hết cho 37 => 999ab chia hết cho 37
=> cab cũng chia hết cho 37 (đpcm)
Số có 3 chữ số chia hết cho 4 là các số 100 , 104 ,... đến 996 là có : \(\frac{996-100}{4}+1=225\text{ số}\)
số có 3 chữ số chia hết cho 28 là các số 112, 140,.. đến 980 là có : \(\frac{980-112}{28}+1=32\text{ số}\)
Vậy có \(225-32=193\text{ số có 3 chữ số chia hết cho 4 mà không chia hết cho 7}\)
a) abcdeg = 1000.abc +deg = 1001.abc - abc + deg = 1001.abc - (abc - deg)
Mà 1001.abc chia hết cho 7 và abc - deg chia hết cho 7
=> abcdeg chia hết cho 7 (đpcm)
b) abcdeg = 10000.ab + 100.cd + eg = 9999.ab + 99.cd + (ab + cd + eg)
Vì 9999.ab chia hết cho 11, 99.cd chia hết cho 11 và ab + cd + eg chia hết cho 11
=> abcdeg chia hết cho 11 (đpcm)
Cho mình **** nha
a) Dựa vào dấu hiệu chia hết cho 7.
b) Dực vào dấu hiệu chia hết cho 11.
a, b, c,d là các chữ số
abcd chia hết cho 9 nên (a + b + c + d) chia hết cho 9
Mà ab + cd = (a + b + c + d)
Nên ab + cd cũng chia hết cho 9
Dãy số abc chia hết cho 27 :
108; 135; 162; ...; 999
Từ dãy số trên ta lập dãy số bca :
081; 351; 621; ...; 999
Nhận thấy các số trong dãy số bca luôn chia hết cho 27 và số sau bằng số liền trước công với 270.
Kết luận : abc chia hết cho 27 thì bca cũng chia hết cho 27
a) Có \(\overline{ab}+\overline{ba}=10a+b+10b+a=11a+11b=11\left(a+b\right)\)
Do \(11⋮11\Rightarrow11\left(a+b\right)⋮11\Rightarrow\overline{ab}+\overline{ba}⋮11\)
b) Có \(\overline{abc}-\overline{cba}=\left(100a+10b+c\right)-\left(100c+10b+a\right)\)
\(=100a+10b+c-100c-10b-a\)
\(=\left(100a-a\right)+\left(10b-10b\right)+\left(c-100c\right)\)
\(=99a-99c\)
\(=99\left(a-c\right)\)
Do \(99⋮99\Rightarrow99\left(a-c\right)⋮99\Rightarrow\overline{abc}-\overline{cba}⋮99\)
a, 34590 chia hết cho 15
b, 11506 chia hết cho 11
c, 7904 chia hết cho 8
d, 540 chia hết cho 7
e, 702 chia hết cho 13
k và kb mình sẽ gửi cách làm cho