Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)\)
\(=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)\)
\(=x^2+y^2\)
b) Ta có: \(\left(49x^2-81y^2\right):\left(7x+9y\right)\)
\(=\frac{\left(7x+9y\right)\left(7x-9y\right)}{7x+9y}\)
\(=7x-9y\)
c) Ta có: \(\left(x^3+3x^2y+3xy^2+y^3\right):\left(x+y\right)\)
\(=\left(x+y\right)^3:\left(x+y\right)\)
\(=\left(x+y\right)^2=x^2+2xy+y^2\)
d) Ta có: \(\left(x^3-3x^2y+3xy^2-y^3\right):\left(x^2-2xy+y^2\right)\)
\(=\left(x-y\right)^3:\left(x-y\right)^2\)
\(=\left(x-y\right)\)
e)Sửa đề: \(\left(8x^3+1\right):\left(2x+1\right)\)
Ta có: \(\left(8x^3+1\right):\left(2x+1\right)\)
\(=\frac{\left(2x+1\right)\left(4x^2-2x+1\right)}{2x+1}\)
\(=4x^2-2x+1\)
f) Ta có: \(\left(8x^3-1\right):\left(4x^2+2x+1\right)\)
\(=\frac{\left(2x-1\right)\left(4x^2+2x+1\right)}{4x^2+2x+1}\)
\(=2x-1\)
a, (x4 + 2x2y2 + y4) : (x2 + y2)
= (x2 + y2)2 : (x2 + y2)
= x2 + y2
b, (49x2 - 81y2) : (7x + 9y)
= (7x - 9y)(7x + 9y) : (7x + 9y)
= 7x - 9y
c, (x3 + 3x2y + 3xy2 + y3) : (x + y)
= (x + y)3 : (x + y)
= (x + y)2
d, (x3 - 3x2y + 3xy2 - y3) : (x2 - 2xy + y2)
= (x - y)3 : (x - y)2
= x - y
Phần e thiếu thì phải
f, (8x3 - 1) : (4x2 + 2x + 1)
= (2x - 1)(4x2 + 2x + 1) : (4x2 + 2x + 1)
= 2x - 1
Chúc bn học tốt!
\(a)\)\(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\) ( đề nhầm đúng ko bn )
\(M=\left(x^3-3x^2y+3xy^2-y^3\right)-\left(x^2-2xy+y^2\right)\)
\(M=\left(x-y\right)^3-\left(x-y\right)^2\)
\(M=7^3-7^2\)
\(M=294\)
Chúc bạn học tốt ~
Bài 1: Thực hiện phép tính
a) 3x(2x2 - 5x + 9) = \(6x^3-15x^2+27x\)
b) 5x(x2-xy+1) = \(5x^3-5xy+5x\)
c) -2/3x2y(3xy-x2+y) = \(-2x^3y^2+\dfrac{2}{3}x^4y-\dfrac{2}{3}x^2y^2\)
2) Thực hiện phép tính
a) (5x-2y) (x2-xy+1) = \(5x^3+5x-7y-2x^3y+2xy^2\)
b) (x+3y)(x2-2xy+y) = \(x^3-x^2y+xy+6xy^2+y^2\)
c) (3x-5y) (4x+ 7y) = \(12x^2-xy-35y^2\)
Bài 3: Rút gọn các biểu thức sau(bằng cách khai triển hằng đẳng thức):
a) (x+y)2+(x-y)2
= \(x^2+2xy+y^2+x^2-2xy+y^2\)
= \(\left(x^2+x^2\right)+\left(2xy-2xy\right)+\left(y^2+y^2\right)\)
= \(2x^2+2y^2=2\left(x^2+y^2\right)\)
b) (x+2)(x-2)-(x-3)(x+1)
= \(x^2-4\) - \(\left(x^2-2x-3\right)\)= \(x^2-4-x^2+2x+3\)
= \(\left(x^2-x^2\right)+2x+\left(-4+3\right)\)=\(2x-1\)
c) (x-2)(x+2)-(x-2)2
=>\(x^2-4-\left(x^2-2.x.2+2^2\right)=x^2-4-x^2-4x+4=\left(x^2-x^2\right)+\left(-4+4\right)-4x=-4x\)
d) (2x+y)(4x2-2xy+y2)-(2x-y)(4x2+2xy+y2)
= \(8x^3+y^3-\left(8x^3-y^3\right)\)
= \(8x^3+y^3-8x^3+y^3\)
= \(\left(8x^3-8x^3\right)+\left(y^3+y^3\right)\)= \(2y^3\)
a) \(A=x\left(x+2\right)+y\left(y-2\right)-2xy+37\)
\(A=x^2+2x+y^2-2y-2xy+37\)
\(A=\left(x^2-2xy+y^2\right)+\left(2x-2y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+37\)
\(A=\left(x-y\right)^2+2\left(x-y\right)+1+36\)
\(A=\left(x-y+1\right)^2+36\)
Thay x - y = 7 vào A
\(A=\left(7+1\right)^2+36\)
\(A=8^2+36\)
\(A=64+36\)
\(A=100\)
b) \(B=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-9\)
\(B=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2+xy-3xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x^2-2xy+y^2\right)-9\)
\(B=\left(x-y\right)^3+\left(x-y\right)^2-9\)
Thay x - y = 7 vào B
\(B=7^3+7^2-9\)
\(B=343+49-9\)
\(B=383\)
c) \(C=x^3-x^2-y^3-y^2-3xy\left(x-y\right)+2xy\)
\(C=\left[x^3-y^3-3xy\left(x-y\right)\right]-\left(x^2-2xy+y^2\right)\)
\(C=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay x - y = 7 vào C
\(C=7^3-7^2\)
\(C=343-49\)
\(C=294\)
d) \(D=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(D=x^3+x^2-y^3+y^2+xy-3x^2y+3xy^2-3xy-95\)
\(D=\left(x^3-3x^2y+3xy^2-y^3\right)+\left(x^2-2xy+y^2\right)-95\)
\(D=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay x - y = 7 vào D
\(D=7^3+7^2-95\)
\(D=343+49-95\)
\(D=297\)
\(a,\left(x+3\right).\left(x^2-3x+9\right)-\left(54+x^3\right)=x^3+27-54-x^3=-27.\)
\(b,8x^3+y^3-8x^3+y^3=2y^3\)
a. Có \(x+y=2\Rightarrow x^2+2xy+y^2=4\Rightarrow x^2+y^2=4-2.\left(-3\right)=10\)
\(x^4+y^4=\left(x^2\right)^2+\left(y^2\right)^2=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=10^2-2.\left(-3\right)^2=82\)
b. Ta có \(x+y=1\Rightarrow x^2+y^2=1-2xy\)
\(x^3+y^3+3xy=\left(x+y\right)\left(x^2-xy+y^2\right)+3xy\)
\(=1.\left(1-2xy-xy\right)+3xy=1\)
Các câu còn lại tương tự
Giải:
a) \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(\Leftrightarrow M=\left[x^3-3xy\left(x-y\right)-y^3\right]-\left(x^2-2xy+y^2\right)\)
\(\Leftrightarrow M=\left(x-y\right)^3-\left(x-y\right)^2\)
Thay \(x-y\) vào, được:
\(M=7^3-7^2=294\)
Vậy ...
b) \(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-95\)
\(\Leftrightarrow N=x^3+x^2-y^3+y^2+xy-3xy-3xy\left(x-y\right)-95\)
\(\Leftrightarrow N=x^3+x^2-y^3+y^2-2xy-3xy\left(x-y\right)-95\)
\(\Leftrightarrow N=\left[x^3-y^3-3xy\left(x-y\right)\right]+\left(x^2-2xy+y^2\right)-95\)
\(\Leftrightarrow N=\left(x-y\right)^3+\left(x-y\right)^2-95\)
Thay \(x-y\) vào, được:
\(N=7^3+7^2-95=297\)
Vậy ...
Chúc bạn học tốt!
\(1.5x\left(x^2+2x-1\right)-3x^2\left(x-2\right)=5x^3+10x^2-5x-3x^3+6x^2\)
\(=2x^3+16x^2-5x\)
\(=\left(2x^3-x\right)+\left(16x^2-4x\right)\)
\(=x\left(2x^2-1\right)+4x\left(4x-1\right)\left(ĐCCM\right)\)
a, x2 + y2
= x2 + 2y + y2 - 2xy
= (x + y)2 - 2xy
b, x3 + y3
= x3 + 3x2y + 3xy2 + y3 - 3x2y - 3xy2
= (x + y)3 - 3xy(x + y)
a) Biến đổi VP :
\(\left(x+y\right)^2-2xy\)
\(=x^2+2xy+y^2-2xy\)
\(=x^2+y^2\left(=VT\right)\left(đpcm\right)\)
b) Biến đổi vế phải :
\(\left(x+y\right)^3-3xy\left(x+y\right)\)
\(=x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)\)
\(=x^3+3xy\left(x+y\right)+y^3-3xy\left(x+y\right)\)
\(=x^3+y^3\left(=VT\right)\left(đpcm\right)\)