Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Nếu b//c và a \(\perp\)b thì a \(\perp\)c
b, Nếu a//b và c//a thì b // c
c, Nếu b \(\perp\)c và a \(\perp\)b thì a // c
d, Nếu AB //a và BC //a thì AB // BC
e, Hai tia phân giác của hai góc kề bù thì vuông góc với nhau
a)
a 1 2 c b
Ta có : đường thẳng a \(\perp\)với đường thẳng c \(\Rightarrow\) góc 1 (kí hiệu ) \(=90^o\)
và đường thẳng b\(\perp\)với đường thẳng c \(\Rightarrow\)góc 2 (kí hiệu ) \(=90^o\)
Mà 2 góc này ở vị trí đồng vị \(\Rightarrow a//b\)
\(\Rightarrow..\left(dpcm\right)....\)
b) a c b 1 2' 2 1'
Vì đường thẳng a \(//\)với đường thẳng c \(\Rightarrow\)góc 1 (kí hiệu ) = góc 1' ( kí hiệu ) ( so le trong)
Vì đường thẳng b \(//\)với đường thẳng c \(\Rightarrow\)góc 2( kí hiệu ) = góc 2' ( kí hiệu ) (so le trong )
mà góc 1' ( kí hiệu )= góc 2' (kí hiệu ) \(\Rightarrow\)góc 1 ( kí hiệu )= góc 2(kí hiệu)
Mà 2 góc này lại ở vị trí so le trong \(\Rightarrow a//b\Rightarrow........\left(dpcm\right)\)
c) a b c 1 2
Vì đường thẳng a \(\perp\)với đường b \(\Rightarrow\)góc 1(kí hiệu ) \(=90^o\)
Lại có đường thẳng b \(//\)với đường thẳng c \(\Rightarrow\)góc 1 (kí hiệu) = góc 2(kí hiệu) \(=90^o\)
Do đó \(a\perp c\Rightarrow......\left(dpcm\right)....\)
_Minh ngụy_
một đường thẳng vuông góc với một trong hai đường thẳng song song thì nó cũng vuông góc với đường thẳng còn lại
a) Ta có :
c // p \(\Leftrightarrow\hept{\begin{cases}a⊥b\\b⊥p\\a\backslash\backslash c\end{cases}}\)
Vậy c // p ( dựa theo mối quan hệ giữa vuông góc và song song )
b)GT : a cắt b tại A ; b // c
KL : a cắt c
apcb
a, C và P có quan hệ Vuông GÓC vì a vuông góc với b, b vuông góc với p
=> a và p song song ( Định Lý) (1)
Mà a song song với c (2)
Từ (1) và (2)=>c song song với p
b,
bac
giả thiết: có 2 đường thẳng song song
1 đường thẳng cắt 1 trong 2 đường thẳng song song đó
Kết luận: đường thẳng cắt 1 trong 2 đường thẳng trên thì nó cắt đường thẳng còn lại
CHÚC BN HỌC TỐT!!!!!!!!!
NHỚ K ĐÚNG CHO MÌNH NHA
a b c d A 1 B 1 C 1
Kẻ đường thẳng d cắt a,b,c lần lượt tại A,B,C
a // b \(\Rightarrow\) góc A1 = góc B1 (đồng vị)
b // c \(\Rightarrow\) góc B1 = góc C1 (đồng vị)
Suy ra góc A1 = góc C1
mà hai góc này đứng vị trí so le trong nên a // c
a b c
Giả sử a không song song với c => a cắt c (Vì a; c phân biệt)
Gọi A là giao của a và c
a // b => A nằm ngoài đường thẳng b
Theo Tiên đề EuClid : Qua A kẻ được duy nhất một đường thẳng song song với đường thẳng b
Mà theo đề bài : a // b; c // b
=> c và a trùng nhau (trái với giả thiết) => Điều giả sử sai
Vậy a//c