Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử các biểu thức đều xác định
a/
\(sinx.cotx+cosx.tanx=sinx.\frac{cosx}{sinx}+cosx.\frac{sinx}{cosx}=sinx+cosx\)
b/
\(\left(1+cosx\right)\left(sin^2x+cos^2x-cosx\right)=\left(1+cosx\right)\left(1-cosx\right)=1-cos^2x=sin^2x\)
c/
\(\frac{sinx+cosx}{cos^3x}=\frac{1}{cos^2x}\left(\frac{sinx+cosx}{cosx}\right)=\left(1+tan^2x\right)\left(tanx+1\right)=tan^3x+tan^2x+tanx+1\)
d/
\(tan^2x-sin^2x=\frac{sin^2x}{cos^2x}-sin^2x=sin^2x\left(\frac{1}{cos^2x}-1\right)\)
\(=sin^2x\left(\frac{1-cos^2x}{cos^2x}\right)=sin^2x.\frac{sin^2x}{cos^2x}=sin^2x.tan^2x\)
e/ \(cot^2x-cos^2x=\frac{cos^2x}{sin^2x}-cos^2x=cos^2x\left(\frac{1}{sin^2x}-1\right)=cos^2x\left(\frac{1-sin^2x}{sin^2x}\right)\)
\(=cos^2x.\frac{cos^2x}{sin^2x}=cos^2x.cot^2x\)
\(sina+cosa=\frac{1}{\sqrt{2}}\Rightarrow\left(sina+cosa\right)^2=\frac{1}{2}\Rightarrow1+2sina.cosa=\frac{1}{2}\)
\(\Rightarrow sina.cosa=-\frac{1}{4}\)
\(tan^2a+cot^2a=\left(tana+cota\right)^2-2=\left(\frac{sina}{cosa}+\frac{cosa}{sina}\right)^2-2=\frac{1}{\left(sina.cosa\right)^2}-2\)
\(=\frac{1}{\left(-\frac{1}{4}\right)^2}-2=14\)
\(cot^2a+tan^2a=\frac{cos^2a}{sin^2a}+\frac{sin^2a}{cos^2a}=\frac{cos^4a+sin^4a}{sin^2a.cos^2a}=\frac{8\left(\frac{1+cos2a}{2}\right)^2+8\left(\frac{1-cos2a}{2}\right)^2}{2\left(2sina.cosa\right)^2}\)
\(=\frac{2+4cos2a+2cos^22a+2-4cos2a+2cos^22a}{2sin^22a}=\frac{4+4cos^22a}{2sin^22a}\)
\(=\frac{4+4\left(\frac{1+cos4a}{2}\right)}{2\left(\frac{1-cos4a}{2}\right)}=\frac{6+2cos4a}{1-cos4a}\)
Đúng như bạn viết vế trái là thế này:
\(\left(\frac{tan^2x}{1+tan^2x}\right)\left(\frac{1+cot^2x}{cotx}\right)=\left(\frac{1}{\frac{1}{tan^2x}+1}\right)\left(\frac{1+cot^2x}{cotx}\right)\)
\(=\left(\frac{1}{cot^2x+1}\right)\left(\frac{1+cot^2x}{cotx}\right)=\frac{1}{cotx}=tanx\)
Còn vế phải sẽ ra thế này:
\(\frac{1+tan^4x}{tan^2x+cot^2x}=\frac{1+tan^4x}{tan^2x+\frac{1}{tan^2x}}=\frac{tan^2x\left(1+tan^4x\right)}{tan^4x+1}=tan^2x\)
Hai vế ra kết quả khác nhau nên chắc bạn ghi sai đề :)
a/
\(\left(\frac{sin2x}{cos2x}-\frac{sinx}{cosx}\right)cos2x=\left(\frac{sin2x.cosx-cos2x.sinx}{cos2x.cosx}\right).cos2x\)
\(=\frac{sin\left(2x-x\right)}{cosx}=\frac{sinx}{cosx}=tanx\)
b/
\(2\left(1-sinx\right)\left(1+cosx\right)=2+2cosx-2sinx-2sinxcosx\)
\(=1+sin^2x+cos^2x-2sinx+2cosx-2sinx.cosx\)
\(=\left(1-sinx+cosx\right)^2\)
c/
\(1+cotx+cot^2x+cot^3x=1+cotx+cot^2x\left(1+cotx\right)\)
\(=\left(1+cotx\right)\left(1+cot^2x\right)=\left(1+\frac{cosx}{sinx}\right)\left(1+\frac{cos^2x}{sin^2x}\right)=\frac{sinx+cosx}{sin^3x}\)
d/
\(\frac{cos3x}{sinx}+\frac{sin3x}{cosx}=\frac{cos3x.cosx+sin3x.sinx}{sinx.cosx}=\frac{cos\left(3x-x\right)}{\frac{1}{2}2sinx.cosx}=\frac{2cos2x}{sin2x}=2cot2x\)
Sửa đề: \(2\cdot sin\left(180-a\right)\cdot cota-cos\left(180-a\right)\cdot tana+cot\left(180-a\right)\)
\(=2\cdot sina\cdot cota+cosa\cdot tana+\dfrac{cos\left(180-a\right)}{sin\left(180-a\right)}\)
\(=2\cdot sina\cdot\dfrac{cosa}{sina}+cosa\cdot\dfrac{sina}{cosa}+\dfrac{-cosa}{sina}\)
\(=2cosa+sina-tana\)
\(VT=tan^4x+cos^4x-2\left(tan^2x+cot^2x\right)+8\)
\(=\left(tan^2x+cot^2x\right)^2-2\left(tan^2x+cot^2x\right)+6\)
\(=\left(tan^2x+cot^2x-1\right)^2+5\)
Mặt khác áp dụng BĐT \(a^2+b^2\ge2ab\Rightarrow tan^2x+cot^2x\ge2\)
\(\Rightarrow\left(tan^2x+cot^2x-1\right)^2+5\ge\left(2-1\right)^2+5=6>5\Rightarrow VT>5\) (1)
Lại có \(3sinx-4cosx=5\left(sinx.\frac{3}{5}-cosx.\frac{4}{5}\right)\)
Do \(\left(\frac{3}{5}\right)^2+\left(\frac{4}{5}\right)^2=1\Rightarrow\) đặt \(\left\{{}\begin{matrix}\frac{3}{5}=cosa\\\frac{4}{5}=sina\end{matrix}\right.\)
\(\Rightarrow VP=3sinx-4cosx=5\left(sinx.cosa-cosx.sina\right)=5sin\left(x-a\right)\)
Do \(sin\left(x-a\right)\le1\Rightarrow5sin\left(x-a\right)\le5\Rightarrow VP\le5\) (2)
(1), (2) \(\Rightarrow VT>VP\)
\(\left(cota+tana\right)^2-\left(cota-tana\right)^2\)
\(=cot^2a+2+tan^2a-\left(cot^2a-2+tan^2a\right)\)
\(=2+2=4\)
Bạn chép sai đề rồi