K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2016

\(S=\left(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(S>\frac{50.1}{150}+\frac{50.1}{200}\)

\(\Rightarrow S>\frac{1}{3}+\frac{1}{4}\)

\(S>\frac{7}{12}\)

Chúc em học tốt^^

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}>\frac{7}{12}\)

\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)\)

\(\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

11 tháng 4 2018

tương tự bài trước bn đưa ra

bn thử tham khảo cách lm của mik r bn tự lm nha 

22 tháng 4 2019

\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}.\)

mik sẽ làm theo cách ngắn nhất mak cô đã bày :3 sai thì bạn ib mik để mik sửa ạ 

ta có \(\frac{1}{101}>\frac{1}{200}\)

      \(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

tương tự như vậy .... cho đến 

\(\frac{1}{199}>\frac{1}{200}\)

mak t có \(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}.\)có 100 phân số

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>100\cdot\frac{1}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{100}{200}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)(đpcm)

28 tháng 4 2018

a/  Tinh giá trị:

\(D=\left(1-\frac{1}{2}\right).\left(1-\frac{1}{3}\right).\left(1-\frac{1}{4}\right)...\left(1-\frac{1}{10}\right)\) \(\Leftrightarrow D=\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{7}{8}.\frac{8}{9}.\frac{9}{10}=\frac{1}{10}\) 

b/  Chứng minh:

\(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{2}\) 

-  Với mọi số tự nhiên n khác không thì luôn có:   \(\frac{1}{n^2}< \frac{1}{\left(n-1\right)\left(n+1\right)}=\frac{1}{2}\left(\frac{1}{n-1}-\frac{1}{n+1}\right)\) Do đó:

 \(E=\frac{1}{2^2}+\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{100^2}< \frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{99.101}=\) 

   \(=\frac{1}{2}\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-...+\frac{1}{99}-\frac{1}{101}\right)\)\(=\frac{1}{2}\left(1-\frac{1}{101}\right)< \frac{1}{2}\) Vậy \(E< \frac{1}{2}\) 

c/  Chứng minh : \(F=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}>\frac{7}{12}\) 

    \(F=\left(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}\right)+\left(\frac{1}{151}+\frac{1}{152}+...+\frac{1}{200}\right)>\frac{50}{150}+\frac{50}{200}=\frac{1}{3}+\frac{1}{4}=\frac{7}{12}\)

   Vậy:            \(F>\frac{7}{12}\) .

18 tháng 3 2021

i

help me

6 tháng 4 2017

Ta có :

\(\frac{1}{101}>\frac{1}{200}\)

\(\frac{1}{102}>\frac{1}{200}\)

\(\frac{1}{103}>\frac{1}{200}\)

\(.........\)

\(\frac{1}{200}=\frac{1}{200}\)

Cộng vế với vế ta được :

\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)

\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)

26 tháng 4 2017

\(A=\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{199}+\frac{1}{200}\)

Ta thấy các phân số \(\frac{1}{101};\frac{1}{102};\frac{1}{103};...;\frac{1}{198};\frac{1}{199}\)đều lớn hơn \(\frac{1}{200}\)

\(\Rightarrow A>\frac{1}{200}+\frac{1}{200}+\frac{1}{200}+..+\frac{1}{200}+\frac{1}{200}\)(có 100 số hạng \(\frac{1}{200}\))

\(\Leftrightarrow A>\frac{100}{200}\)

\(\Leftrightarrow A>\frac{1}{2}\)

10 tháng 4 2017

1/2 + 1/6 + 1/12 + 1/20 + 1/30 + 1/42 + 1/56 + 1/72

\(=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+\frac{1}{5.6}\)\(+\frac{1}{6.7}+\frac{1}{7.8}+\frac{1}{8.9}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{7}-\frac{1}{8}\)\(+\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)

10 tháng 4 2017

1/2+1/6+1/12+1/20+1/30+1/42+1/56+1/72

=1/1.2+1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8+1/8.9

=1-1/2+1/2-1/3+1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9

=1-1/9

=8/9