Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Đặt \(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
Do đó: A=C+D
\(C=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x-3\right)\left(x+3\right)-\left(2x+3\right)^2-\left(5-20x\right)\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-4x^2-12x-9-5+20x\)
\(=-30\)
\(D=5x\left(x-7\right)\left(x+7\right)-x\left(2x-1\right)^2-\left(x^3+4x^2-246x\right)-175\)
\(=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-x^3-4x^2+246x-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
=-175
A=C+D=-30-175=-205
b: Đặt \(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
Do đó: B=E+F
\(E=-2x\left(3x+2\right)^2+\left(4x+1\right)^2+2\left(x^3+8x^2+3x-2\right)-\left(5-x\right)\)
\(=-2x\left(9x^2+12x+4\right)+16x^2+8x+1+2x^3+16x^2+6x-4-5+x\)
\(=-18x^3-24x^2-8x+32x^2+14x+1-5+x\)
\(=-18x^3+8x^2+7x-4\)
\(F=\left(5x-2\right)^2-\left(6x+1\right)^2+11\left(x-2\right)\left(x+2\right)-16\left(3-2x\right)\)
\(=25x^2-20x+4-36x^2-12x-1+11x^2-44-48+32x\)
\(=-95\)
\(B=-18x^3+8x^2+7x-99\)
1)
a) \(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^3-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
=>đpcm
b) \(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2=-24\)
=>đpcm
2,
a) \(5x\left(12x+7\right)-3x\left(20x-5\right)=-100\)
\(\Leftrightarrow60x^2+35x-60x^2+15x=-100\)
\(\Leftrightarrow50x=-100\)
\(\Leftrightarrow x=-2\)
b) \(0,6x\left(x-0,5\right)-0,3x\left(2x+1,3\right)=0,138\)
\(\Leftrightarrow0,6x^2-0,3x-0,6x^2-0,39x=0,138\)
\(\Leftrightarrow-0,69x=0,138\)
\(\Leftrightarrow x=-0,2\)
Câu 1:
a)\(x\left(2x+1\right)-x^2\left(x+2\right)+\left(x^2-x+3\right)\)
\(=2x^2+x-x^3-2x^2+x^2-x+3\)
\(=x^3+3\)(ko thể CM)
b)\(4\left(x-6\right)-x^2\left(2+3x\right)+x\left(5x-4\right)+3x^2\left(x-1\right)\)
\(=4x-24-2x^2-3x^3+5x^2-4x+3x^3-3x^2\)
\(=-24\)(đpcm)
a/VT=x5+x^4.y+x^3.y^2+x^2.y^4+x.y^4-x^4.y-x^3.y^2-x^2.y^3-x.y^4-y^5
=x^5-y^5=VP
=>dpcm
hc tốt
1/ \(A=3\left(x+1\right)^2-\left(x+3\right)^2\)
\(=3\left(x^2+2x+1\right)-\left(x^2+6x+9\right)\)
\(=3x^2+6x+3-x^2-6x-9\)
\(=2x^2-6\)
Vậy biểu thức A vẫn phụ thuộc vào biến -_-
2/ \(B=\left(x-2\right)^2-\left(x-4\right)x\)
\(=x^2-4x+4-x^2-4x\)
\(=4\)
Vậy biểu thức B không phụ thuộc vào biến (đpcm)
3/ \(C=3\left(x+2\right)^2-3\left(x^2-4x\right)\)
\(=3\left(x^2+4x+4\right)-3x^2+12x\)
\(=3x^2+12x+12-3x^2+12x\)
\(=24x+12\)
Vậy biểu thức C vẫn phụ thuộc vào biến -_-
4/ \(D=3x\left(x-2\right)\left(x+2\right)-x\left(3x+3\right)\)
\(=3x\left(x^2-4\right)-3x^2-3x\)
\(=3x^3-12x-3x^2-3x\)
\(=3x^3-3x^2-15x\)
Vậy biểu thức D vẫn phụ thuộc vào biến -_-
5/ \(E=x^2-\left(x+1\right)\left(x-1\right)+5\)
\(=x^2-\left(x^2-1\right)+5\)
\(=x^2-x^2+1+5\)
\(=6\)
Vậy biểu thức E không phụ thuộc vào biến.
3) \(\left(x-3\right)\left(x+3\right)\left(x^2+9\right)-\left(x^2-2\right)\left(x^2+2\right)\)
\(=\left(x^2-9\right)\left(x^2+9\right)-\left(x^4-4\right)\)
\(=\left(x^4-81\right)-\left(x^4-4\right)\)
\(=x^4-81-x^4+4\)
=-77 =>đpcm
4)\(\left(3x+1\right)^2-2\left(3x+1\right)\left(3x+5\right)+\left(3x+5\right)^2\)
\(=\left[\left(3x+1\right)-\left(3x+5\right)\right]^2\)
\(=\left(3x+1-3x-5\right)^2\)
=(-4)2
=16 => đpcm
1)\(\left(x-2\right)^2-\left(x-3\right)\left(x-1\right)=\left(x^2-4x+4\right)-\left(x^2-4x+3\right)=1\)
=>đpcm
2)\(\left(x-1\right)^3-\left(x+1\right)^3+6\left(x+1\right)\left(x-1\right)\)
\(=\left(x-1-x-1\right)\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]+6\left(x^2-1\right)\)
\(=\left(-2\right)\left(x^2-2x+1+x^2-1+x^2+2x+1\right)+6x^2-6\)
\(=\left(-2\right)\left(3x^2+1\right)+6x^2-6=-6x^2-2+6x^2-6=-8\) => đpcm
\(A=4x^2-2\left(y+2,5x^2\right)+x^2-4y\)
\(=4x^2-2y-5x^2+x^2-4y=-6y\)
\(B=\left(x+y\right).\left(x^4-x^3y+x^2y^2-xy^3+y^4\right)-\left(x^5+y^5-8\right)\)
\(=x^5-x^4y+x^3y^2-x^2y^3+xy^4+x^4y-x^3y^2+x^2y^3-xy^4+y^5-x^5-y^5+8\)
\(=8\)
Vậy BT B ko phụ thuộc vào biến
câu sau tương tự
\(5x\left(x+1\right)-3\left(x-5\right)+4\left(3x-6\right)=2x^2-7\)
\(\Rightarrow5x^2+5x-3x+15+12x-24=2x^2-7\)
\(\Rightarrow5x^2+14x-9=2x^2-7\Rightarrow5x^2+14x-9-2x^2+7=0\)
\(\Rightarrow3x^2+14x-2=0\)
\(\Rightarrow3\left(x^2+\frac{14}{3}x-\frac{2}{3}\right)=0\Rightarrow x^2+2.x.\frac{7}{3}+\frac{49}{9}-\frac{55}{9}=0\)
\(\Rightarrow\left(x+\frac{7}{3}\right)^2=\frac{55}{9}\Rightarrow x+\frac{7}{3}\in\left\{\sqrt{\frac{55}{9}};-\sqrt{\frac{55}{9}}\right\}\Rightarrow x\in\left\{\sqrt{\frac{55}{9}}-\frac{7}{3};-\sqrt{\frac{55}{9}}-\frac{7}{3}\right\}\)
Nếu sai đề làm mệt lắm.
đó là mk nghĩ thui mà