K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 4 2020

\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+...+\frac{1}{512}-\frac{1}{1024}\)

\(A=\frac{1}{2}-\frac{1}{2^2}+\frac{1}{2^3}-\frac{1}{2^4}+...+\frac{1}{2^9}-\frac{1}{2^{10}}\)

\(2A=1-\frac{1}{2}+\frac{1}{2^2}-\frac{1}{2^3}+...+\frac{1}{2^8}-\frac{1}{2^9}\)

\(3A=1-\frac{1}{2^{10}}< 1\)

\(\Rightarrow A< \frac{1}{3}\)

26 tháng 1 2016

nhầm tớ lộn sang bài khác sorry

27 tháng 1 2016

trình bày cách giải giùm với nhé

 

2 tháng 4 2016

a) Ta có 

\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}\)

Mà \(\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}\)

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{7.8}=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{7}-\frac{1}{8}\)

                                                      \(=1-\frac{1}{8}\)

                                                       \(=\frac{7}{8}<1\)

Vì \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{8.8}<\frac{7}{8}<1\)

nên \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{8^2}<1\)