Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^5+x^4+x^3+x^2+x+1=0\)
\(\Rightarrow x^4\left(x+1\right)+x^2\left(x+1\right)+\left(x+1\right)=0\)
\(\Rightarrow\left(x+1\right)\left(x^4+x^2+1\right)=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
Bài 1 :
Phương trình <=> 2x . x2 = ( 3y + 1 ) 2 + 15
Vì \(\hept{\begin{cases}3y+1\equiv1\left(mod3\right)\\15\equiv0\left(mod3\right)\end{cases}\Rightarrow\left(3y+1\right)^2+15\equiv1\left(mod3\right)}\)
\(\Rightarrow2^x.x^2\equiv1\left(mod3\right)\Rightarrow x^2\equiv1\left(mod3\right)\)
( Vì số chính phương chia 3 dư 0 hoặc 1 )
\(\Rightarrow2^x\equiv1\left(mod3\right)\Rightarrow x\equiv2k\left(k\inℕ\right)\)
Vậy \(2^{2k}.\left(2k\right)^2-\left(3y+1\right)^2=15\Leftrightarrow\left(2^k.2.k-3y-1\right).\left(2^k.2k+3y+1\right)=15\)
Vì y ,k \(\inℕ\)nên 2k . 2k + 3y + 1 > 2k .2k - 3y-1>0
Vậy ta có các trường hợp:
\(+\hept{\begin{cases}2k.2k-3y-1=1\\2k.2k+3y+1=15\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=8\\3y+1=7\end{cases}\Rightarrow}k\notinℕ\left(L\right)}\)
\(+,\hept{\begin{cases}2k.2k-3y-1=3\\2k.2k+3y+1=5\end{cases}\Leftrightarrow\hept{\begin{cases}2k.2k=4\\3y+1=1\end{cases}\Rightarrow}\hept{\begin{cases}k=1\\y=0\end{cases}\left(TM\right)}}\)
Vậy ( x ; y ) =( 2 ; 0 )
Bài 3:
Giả sử \(5^p-2^p=a^m\) \(\left(a;m\inℕ,a,m\ge2\right)\)
Với \(p=2\Rightarrow a^m=21\left(l\right)\)
Với \(p=3\Rightarrow a^m=117\left(l\right)\)
Với \(p>3\)nên p lẻ, ta có
\(5^p-2^p=3\left(5^{p-1}+2.5^{p-2}+...+2^{p-1}\right)\Rightarrow5^p-2^p=3^k\left(1\right)\) \(\left(k\inℕ,k\ge2\right)\)
Mà \(5\equiv2\left(mod3\right)\Rightarrow5^x.2^{p-1-x}\equiv2^{p-1}\left(mod3\right),x=\overline{1,p-1}\)
\(\Rightarrow5^{p-1}+2.5^{p-2}+...+2^{p-1}\equiv p.2^{p-1}\left(mod3\right)\)
Vì p và \(2^{p-1}\)không chia hết cho 3 nên \(5^{p-1}+2.5^{p-2}+...+2^{p-1}⋮̸3\)
Do đó: \(5^p-2^p\ne3^k\), mâu thuẫn với (1). Suy ra giả sử là điều vô lý
\(\rightarrowĐPCM\)
ta có n(n+5)-(n-3)(n+2)
= n2+5n-(n2-n-6)
=n2+5n-n2+n+6
= 6n-6
=6(n-1)
=> 6(n-1) chia hết cho 6
hay n(n+5)-(n-3)(n+2) cũng chia hết cho 6
nhớ k giùm mình nha
Mong các bạn sớm giải ra, mình cần cho buổi chiều ngày mai gấp, nếu bạn nào giải được mình sẽ k đúng cho và kết bạn vs bạn đó nha! Cảm phiền các bạn !!!!!!! Giúp mình với nha!
BÀI 1:
Tìm số tự nhiên n sao cho \(19+3^n\)là số chính phương
BÀI 2:
cho a,b,c là các số thực thỏa mãn: \(1\le a\), \(b,c\le3\)và \(a+b+c=6\)
Tìm GTLN: \(M=a^2+b^2+c^2\)
(Lớp 8 mà học đa thức bất khả quy rồi sao???)
Em tìm hiểu sơ về 2 khái niệm sau đây trên mạng: "đa thức bất khả quy" và "tiêu chuẩn Eisenstein".
1. Đa thức hệ số nguyên gọi là bất khả quy nếu không phân tích được thành 2 nhân tử bậc nhỏ hơn với hệ số nguyên (bậc của chúng >=1).
2. Tiêu chuẩn Eisenstein: Nếu tồn tại \(p\) nguyên tố thoả mãn:
- Hệ số cao nhất không chia hết cho \(p\).
- Mọi hệ số khác đều chia hết cho \(p\).
- Riêng hệ số tự do không chia hết cho \(p^2\).
Thì đa thức này bất khả quy.
-----
Nếu em đã hiểu được 2 khái niệm trên thì lời giải như sau:
Xét số nguyên tố \(3\). Nhận thấy theo tiêu chuẩn Eisenstein thì đa thức \(Q\left(x\right)\) bất khả quy. Xong!
\(p^4-1=\left(p^2-1\right)\left(p^2+1\right).\)
+ p là số nguyên tố lớn hơn 5
\(\Rightarrow p^2\)là số chính phương không chia hết cho 3\(\Rightarrow p^2\)chia 3 dư 1\(\Rightarrow p^2-1⋮3\left(1\right)\)
+ \(p^2\)là số chính phương không chia hết cho 5\(\Rightarrow p^2\)chia 5 dư 1,4
-Nếu \(p^2\)chia 5 dư 1\(\Rightarrow p^2-1⋮5\left(2\right)\)
-Nếu \(p^2\)chia 5 dư 4\(\Rightarrow p^2+1⋮5\left(3\right)\)
Từ (1),(2),(3)\(\Rightarrow\left(p^2-1\right)\left(p^2+1\right)⋮3,⋮5\),UCLN(3,5)=1\(\Rightarrow p^4-1⋮15\)
+\(p^2\)là một số chính phương lẻ\(\Rightarrow p^2\)chia 8 dư 1\(\Rightarrow p^2-1⋮8\left(4\right)\)
+ p là số nguyên tố >5\(\Rightarrow p^2+1⋮2\)\(\Rightarrow\left(p^2-1\right)\left(p^2+1\right)⋮16\)
UCLN(15,16)=1
\(\Rightarrow p^4-1⋮BCNN\left(15,16\right)=240\)
Vì a,b>0 nên:\(ab>0;\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow ab\left(a^2-b^2\right)^2\ge0\)
\(\Leftrightarrow ab\left(a^4-2a^2b^2+b^4\right)\ge0\)
\(\Leftrightarrow a^5b-2a^3b^3+ab^5\ge0\)
\(\Leftrightarrow a^6+ab^5+a^5b+b^6-a^6-2a^3b^3-b^6\ge0\)
\(\Leftrightarrow a\left(a^5+b^5\right)+b\left(a^5+b^5\right)-\left(a^3+b^3\right)^2\ge0\)
\(\Leftrightarrow\left(a+b\right)\left(a^5+b^5\right)\ge\left(a^3+b^3\right)^2\)
\(\Leftrightarrow a+b\ge a^3+b^3\)(Vì a^5+b^5=a^3+b^3 và a^3+b^3;a^5+b^5>0)
\(\Leftrightarrow a+b\ge\left(a+b\right)\left(a^2-ab+b^2\right)\)
\(\Leftrightarrow a^2-ab+b^2\ge1\)
Vậy GTLN M=1 tại \(a^2-b^2=0\Leftrightarrow a=b\)
\(\Leftrightarrow a^3+a^3=a^5+a^5\)(Vì a=b)
\(\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}\)(TH a=0 loại vì a>0)
\(\Leftrightarrow b=1\)
Đặt \(m=3^{4^4},n=4^{\frac{5^6-1}{4}}=2^{\frac{5^6-1}{2}}\)
Khi đó ta có \(m^4=\left(3^{4^4}\right)^4=3^4^{^5};4n^4=4\left(4^{\frac{5^6-1}{4}}\right)^4=4\cdot4^{5^6-1}=4^{5^6}\)
Ta có \(A=m^4+4n^4=\left(m^4+4m^2n^2+4n^4\right)-4m^2n^2=\left(m^2+2n^2\right)^2-\left(2mn\right)^2\)
\(A=\left(m^2+2n^2-2mn\right)\left(m^2+2n^2+2mn\right)\)
\(m^2+2n^2+2mn>m^2+2n^2-2mn\)
\(=\left(m-n\right)^2+n^2\ge n^2=2^{5^6-1}>2^{8064}=\left(2^4\right)^{2016}>10^{2016}\)
Vậy bài toán được chứng minh