K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2015

1)

+)Xét trường hợp p=2 =>p+6= 8 là hợp số (trái với giả thiết)

+) Xét trường hợp p=3 =>p+12=15 là hợp số (trái với giả thiết)

+)Xét trường hợp p>3 =>p có một trong hai dạng :3k+1 ; 3k+2

      Nếu p= 3k+1 =>p+8=3k+8+1=3k+9 chia hết cho 3  

            =>p+8 là hợp số (trái với giả thiết )

Vậy p phải có dạng là  3k+2

Nếu p=3k+2 =>p+4 = 3k+2+4 = 3k+6 =3.(k+2)=>p+4 chia hết cho 3

=>p+4 là hợp số (đpcm)

5 tháng 1 2019

Câu 1: Chú ý: \(a^n-b^n=\left(a-b\right)\left(a^{n-1}+a^{n-2}b+....b^{n-1}\right)\)

Nghĩa là chúng ta luôn có a^n- b^n chia hết co a-b, với a, b nguyên

\(6^{2n}+19^n-2^n.2=\left(36^n-2^n\right)+\left(19^n-2^n\right)\)

\(36^n-2^n⋮34\Rightarrow36^n-2^n⋮17\)

\(19^n-2^n⋮17\)

Vậy ....

6 tháng 1 2019

giải hộ mik hết với. mik đang cần gấp

3 tháng 3 2020

mọi người giúp nình với

Bài 1:

 ta có 3^3 = 27 chia 13 dư 1

=> (3^3)^670 = 3^ 2010 chia 13 dư 1 (1) 
5^2 = 25 chia 13 dư (-1)

=> (5^2)^1005 chia 13 dư (-1)^ 1005 = (-1) (2) 
Từ (1); (2)

=> 3^2010+5^2010 chia 13 dư 1 + (-1) = 0 
hay 3^2010+5^2010 chia hết cho 13. 

bài 1:

Ta có
32010=(33)6701670(mod13)32010=(33)670≡1670(mod13)
Mà 52010=(52)1005(1)1005(mod13)52010=(52)1005≡(−1)1005(mod13)
Từ đó suy ra 32010+5201032010+52010 chia hết cho 13

17 tháng 10 2020

a, \(n+12⋮n+4\)

\(\Leftrightarrow n+4+8⋮n+4\Leftrightarrow8⋮n+4\)

\(\Leftrightarrow n+4\inƯ\left(8\right)=\left\{\pm1;\pm2;\pm4;\pm8\right\}\)

n + 41-12-24-48-8
n-3-5-2-60-84-12