K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2018

Bạn dùng phương pháp đặt nhân tử chung của lớp 8 nhé 

\(55^n+1-55^n=55^n.55-55^n\) (vì \(55^n+1=55^n.55^1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì xuất hiện trong tích có thừa số 54 nên chia hết cho 54.

24 tháng 9 2018

Ta có : 

\(55^{n+1}-55^n=55^n.55-55^n=55^n\left(55-1\right)=55^n.54⋮54\)

Vậy \(55^{n+1}-55^n⋮54\) với mọi \(n\inℕ\)

Chúc bạn học tốt ~ 

18 tháng 7 2018

\(55^{n+1}-55^n\)

\(=55^n.55-55^n\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Ta có: \(54⋮54\)

\(\Rightarrow55^n.54⋮54\)

\(\Rightarrow55^{n+1}-55^n⋮54\)

                              đpcm

18 tháng 7 2018

\(\left(5n+2\right)^2-4\)

\(=\left(5n+2\right)^2+2^2\)

\(=\left(5n+2+2\right).\left(5n+2-2\right)\)

\(=\left(5n+4\right).\left(5n\right)\)

Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n

9 tháng 8 2016

55n+1 – 55n  =

= 55.55– 55n

= (55 – 1) . 55n

= 54. 55n

Vậy : 55n+1 – 55n chia hết cho 54.

9 tháng 8 2016

55n+1-55n

=55n.55-55n

=55n.(55-1)

=55n.54 chia hết cho 54(vì tích đó có 1 thừa số là 54)

Chúc bạn học giỏi nha!!!

K cho mik với nhé Võ Hồng Nhung

AH
Akai Haruma
Giáo viên
29 tháng 11 2023

Lời giải:

$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$

$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$ 

Ta có đpcm.

5 tháng 6 2016

 Giải

55^(n+1) -55^n 
= 55^n.55 -55^n 
=55^n( 55 - 1) 
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

14 tháng 8 2016

\(55^{n+1}-55^n\)

\(=55^n.55-55^n.1\)

\(=55^n.\left(55-1\right)\)

\(=55^n.54\)

Vì có 54 trong tích 

=> 55n . 54 chia hết cho 54

=> Điều phải chứng minh

14 tháng 8 2016

55n+1−55= 55n.55−55= 55n(55−1)=(55n.54)⋮54

- Vậy (55n+1−55n)⋮54

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

5 tháng 6 2016

Giải:

Ta có ; 55^(n+1) -55^n

= 55^n.55 -55^n

=55^n( 55 - 1)

=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54) 

21 tháng 6 2017

Ta có: \(55^{n+1}-55^n=55^n.55-55^n\)\(55^n\left(55-1\right)=55^n.54\)

Mà  \(55^n.54⋮54\)(luôn đúng) => \(55^{n+1}-55^n⋮54\)(ĐPCM)