Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Delta\)là delta, hay còn gọi là biệt thức delta, được tính bởi công thức \(\Delta=b^2-4ac\).
Trong đó \(a,b,c\)là các hệ số của phương trình: \(ax^2+bx+c=0\left(a\ne0\right)\)
Còn tại sao \(\Delta=b^2-4ac\)thì lục lại công thức nghiệm của phương trình bậc 2
Qua delta chúng ta có thể tìm được nghiệm của \(ax^2+bx+c=0\left(a\ne0\right)\).
\(\Delta< 0\)thì phương trình vô nghiệm, \(\Delta\ge0\)thì phương trình có nghiệm \(x=\frac{-b\pm\sqrt{\Delta}}{2a}\)
Delta là biệt thức. Vậy tại sao biệt thức ấy giúp bạn tìm ra nghiệm ?, tại sao nó có những đặc tính khác như vậy?
bạn trả lời theo cái cách luôn chấp nhận vô điều kiện những gì được giảng dạy, không tò mò, không sáng tạo.
Trước tiên để hiểu nó là gì, bạn cần phải hiểu phương trình bậc 2 dùng để làm gì ?
Xét ngược lại từ định lý Vi-et thì phương trình bậc 2 dùng để tìm 2 số khi biết tổng và tích của chúng, bạn có thể mở lại định lý để hiểu.
trong đó c là tích 2 nghiệm còn b là tổng 2 nghiệm
VD: PT x2 +bx + c = 0; hệ số a = 1
như đã biết giữa 2 hình CN và hình V có cùng chu vi thì hình V luôn có diện tích lớn hơn.
nên nếu (b/2)2 = c thì phương trình có nghiệm kép ngay tại điểm b/2
nếu (b/2)2 > c thì c = ((b/2) - m) x ((b/2) + m), m là khoảng cách từ 2 nghiệm tới điểm (b/2) là trung bình cộng của 2 nghiệm
<=> c = (b/2)2 - m2 <=> m 2= (b/2)2- c <=> 4m2 = b2 - 4c
mà delta = b 2- 4ac (a = 1) => delta = 4m2
mà hiệu của 2 nghiệm x1, x2 = 2 m vậy nên Delta chính là bình phương hiệu 2 nghiệm
bạn thử nhìn lại cách tìm 2 nghiệm pt xem có phải số lớn = (tổng + hiệu) /2 còn số bé là (tổng - hiệu) /2 không
với tổng là c còn hiệu là \(\sqrt{delta}\)
nói vậy chứ chẳng ai hiểu mình đâu huhu
a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)
\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)
\(A=\frac{4}{\sqrt{x}+2}\)
b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)
=> 2cawn x + 4 = 12
=> 2.căn x = 8
=> căn x = 4
=> x = 16 (thỏa mãn)
c, có A = 4/ căn x + 2 và B = 1/căn x - 2
=> A.B = 4/x - 4
mà AB nguyên
=> 4 ⋮ x - 4
=> x - 4 thuộc Ư(4)
=> x - 4 thuộc {-1;1;-2;2;-4;4}
=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4
=> x thuộc {3;5;2;6;8}
d, giống c thôi
câu 2
\(...=\sqrt{\left(2-\sqrt{5}\right)^2}-\sqrt{\left(2+\sqrt{5}\right)^2}=\left|2-\sqrt{5}\right|-\left|2+\sqrt{5}\right|=-4\)
câu 1
\(P=\left(\frac{\sqrt{x}}{3+\sqrt{x}}+\frac{x+9}{\left(3-\sqrt{x}\right)\left(3+\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-3\right)}-\frac{1}{\sqrt{x}}\right)\)
\(=\left(\frac{\sqrt{x}\left(3-\sqrt{x}\right)+x+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}\right):\left(\frac{3\sqrt{x}+1-\sqrt{x}+3}{\sqrt{x}\left(\sqrt{x}-3\right)}\right)\)
\(=\frac{3\sqrt{x}+9}{\left(3+\sqrt{x}\right)\left(3-\sqrt{x}\right)}:\frac{2\sqrt{x}+4}{\sqrt{x}\left(\sqrt{x}-3\right)}\)
\(=\frac{3}{\left(3-\sqrt{x}\right)}.\frac{\sqrt{x}\left(\sqrt{x}-3\right)}{2\sqrt{x}+4}=\frac{-3\sqrt{x}}{2\sqrt{x}+4}\)
\(P< -1\Leftrightarrow\frac{-3\sqrt{x}}{2\sqrt{x}+4}+1< 0\Leftrightarrow-\sqrt{x}+4< 0\Leftrightarrow\sqrt{x}>4\Leftrightarrow x>16\)
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05 c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105 vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
a bằng số dư của phép chia N cho 2
=>a=1
=>abcd có dạng 1bcd
e thuộc số dư của phép N cho 6
=>e thuộc 0.1.2.3.4.5 mà d bằng số dư của phép chia N cho 5
=> d,e thuộc 00.11.22.33.44.05
c bằng số dư của phép chia N cho 4
=>c,d,e thuộc 000.311.222.133.044.105
=> a,b,c,d,e có dạng là 1b000,1b311,1,222,1b333,1b044,1b105
vì b bằng số dư của phép chia N cho 3
=>a+c+d+e chia hết cho 3
=> chọn được số 1b311.1b044
Ta được các số là : 10311.11311.12311.10044.11044.12044
Ai mướn mày trả lời hả Đức
\(1.\text{/}A=\frac{2x+1}{x^2+2}\Leftrightarrow Ax^2+2A=2x+1\)
\(\Leftrightarrow Ax^2-2x+\left(2A-1\right)=0\)(1)
Để pt 1) có nghiệm \(\Leftrightarrow4-4A\left(2A-1\right)=4-8A^2+4A=-4\left(A-1\right)\left(2A+1\right)\ge0\)
\(\Leftrightarrow-\frac{1}{2}\le A\le1\)
2. \(ab=7\left(a+b\right)\Leftrightarrow ab-7a-7b=0\)
\(\Leftrightarrow a\left(b-7\right)-7b+49=49\)
\(\Leftrightarrow a\left(b-7\right)-7\left(b-7\right)=49\)
\(\Leftrightarrow\left(a-7\right)\left(b-7\right)=49\) đến đây tự làm tiếp