Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi UCLN(2n+1,2n+3)=k
Ta có:
2n+1\(⋮\)k
2n+3\(⋮\)k
=>(2n+3)-(2n+1)\(⋮\)k
mik đang bận nên tẹp nữa làm tiếp
gọi d là ƯCLN ( 2n + 1 , 2n + 3 )
\(\Rightarrow\)2n + 1 \(⋮\)d ; 2n + 3 \(⋮\)d
\(\Rightarrow\) ( 2n + 3 ) - ( 2n + 1 ) \(⋮\)d
\(\Rightarrow\)2 \(⋮\)d
Mà 2n + 1 là số lẻ \(\Rightarrow\)d cũng là số lẻ \(\Rightarrow\)d = 1
Vậy ƯCLN ( 2n + 1 , 2n + 3 ) = 1
a) Vì n\(\inℕ\)nên n + 1 \(\inℕ\)và 2n + 3\(\inℕ\).
Gọi d \(\in\)ƯCLN ( n + 1 , 2n + 3 )
\(\Rightarrow n+1⋮d\)và \(2n+3⋮d\)
\(\Rightarrow\left(2n+3\right)-2\left(n+1\right)⋮d\)
\(\Rightarrow2n+3-2n-2⋮d\)
\(\Rightarrow1⋮d\Rightarrow d\in\left\{1;-1\right\}\)
\(\Rightarrow\frac{n+1}{2n+3}\)là phân số tối giản .
Vậy \(\frac{n+1}{2n+3}\)tối giản \(\forall n\inℕ\).
Bai 2:a)
Goi d thuôc UC(n+1;3n+4)
Suy ra:3n+4chia hêt cho d
n+1chia hêt cho d suy ra 3.(n+1)chia hêt cho d =3n+3 chia hêt cho d
Suy ra :3n +4 -3n -3
chia hêt cho d suy ra 1chia hêt cho d suy ra d = 1
VÂY n+1 ; 3n+1 la 2 sô nguyên tô cung nhau
Đặt A = n(n + 1)(2n + 1)
Ta thấy n(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2
=> A chia hết cho 2 (1)
Ta xét 3 trường hợp:
+ n chia 3 dư 1 => 2n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia 3 dư 2 => n + 1 chia hết cho 3 => A chia hết cho 3
+ n chia hết cho 3 => A chia hết cho 3
Do đó A luôn chia hết cho 3 (2)
Từ (1) và (2) => A chia hết cho 6 (Vì 2.3 = 6 và (2; 3) = 1)
Vậy...
Gọi ƯCLN ( 2n+1 ; 2n +3 ) = d
Vì 2n +1 và 2n + 3 đều lẻ nên d lẻ
Ta có 2n + 1 \(⋮\)d
2n + 3 \(⋮\)d
=> (2n+3) - (2n+1) \(⋮\)d
=> 2 \(⋮\)d
Mà d lẻ => d = 1
Vậy .........