Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
RÚT GỌN:
\(\frac{3.13-13.18}{15.40-80}=\frac{13.\left(3-18\right)}{15.40-40.2}=\frac{13.\left(-15\right)}{40\left(15-2\right)}=\frac{13.\left(-15\right)}{40.13}=-\frac{15}{40}=-\frac{3}{8}\)
CHỨNG MINH:
Ta thấy \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150}\)
=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.\left(150-101+1\right)=\frac{1}{150}.50=\frac{50}{150}=\frac{1}{3}\)(đpcm)
TÍNH HỢP LÝ:
B=\(\frac{5}{13}+\frac{-5}{7}-\frac{20}{41}+\frac{8}{13}+\frac{-21}{41}=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-21}{41}-\frac{20}{41}\right)+\frac{-5}{7}=1+\left(-1\right)+\frac{-5}{7}=0+\frac{-5}{7}=\frac{-5}{7}\)
Ta thấy 1/101>1/150 ; 1/102>1/150 ; .... ; 1/149>1/150 ; 1/150=1/150
suy ra 1/101+1/102+1/103+.....+1/149+1/150>50.1/150
1/101+1/102+1/103+.....+1/148+1/150>1/3
Chứng minh:\(\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+...+\frac{1}{149}+\frac{1}{150}>\frac{1}{3}\)
\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)
=> 2S + 1/101 = \(2.\frac{50}{101}+\frac{1}{101}=\frac{100}{101}+\frac{1}{101}=\frac{101}{101}=1\)
Ta thấy tổng trên có 50 số hạng .
Ta có:
1/101>1/150
1/102>1/150
...
1/149>1/150
1/150=1/150
=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150
---50 số hạng 1/150-------
=>1/101+1/102+...+1/149+1/150>1/150.50
=>1/101+1/102+...+1/149+1/150>50/150
=>1/101+1/102+...+1/149+1/150>1/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Đặt A=1/101+1/102+1/103+...+1/300
vì 1/101>1/102>1/103>...>1/300
=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!)
=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100
=> A > 1/2+1/3
=> A > 5/6
Mà 5/6>2/3
=> A > 2/3
Vậy 1/101+1/102+1/103+...+1/300 >2/3
Vì : 1/101 > 1/300 ; 1/102 > 1/300 .... ; 1/299 >1/300 ; Do 1/101.....1/300 có 200 số
=>1/101+1/102+....+1/299+1/300 > 1/300 x 200
> 2/3
\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)
100 phân số 1/100
\(< 100.\frac{1}{100}\)
\(< 1\)
=> đpcm
Ta có:
1/101 + 1/102 + ... + 1/149 + 1/150 > 1/150 + 1/150 + ... + 1/150 + 1/150
50 phân số 1/150
> 50.1/150
> 1/3
=> đpcm
ta có
\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};....;\frac{1}{150}=\frac{1}{150}\)
=>tổng>\(\frac{1}{150}.50=\frac{1}{3}\)
=>đpcm