\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{149}+\frac{1}{150}\ge\frac{1}{3}\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 6 2016

Ta có:

1/101 + 1/102 + ... + 1/149 + 1/150 > 1/150 + 1/150 + ... + 1/150 + 1/150  

                                                                                      50 phân số 1/150

                                                                 > 50.1/150

                                                                > 1/3

=>  đpcm

25 tháng 6 2016

ta có

\(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};....;\frac{1}{150}=\frac{1}{150}\)

=>tổng>\(\frac{1}{150}.50=\frac{1}{3}\)

=>đpcm

18 tháng 4 2015

RÚT GỌN:

\(\frac{3.13-13.18}{15.40-80}=\frac{13.\left(3-18\right)}{15.40-40.2}=\frac{13.\left(-15\right)}{40\left(15-2\right)}=\frac{13.\left(-15\right)}{40.13}=-\frac{15}{40}=-\frac{3}{8}\)

CHỨNG MINH:

Ta thấy \(\frac{1}{101}>\frac{1}{150};\frac{1}{102}>\frac{1}{150};...;\frac{1}{149}>\frac{1}{150}\)

=>\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{150}>\frac{1}{150}.\left(150-101+1\right)=\frac{1}{150}.50=\frac{50}{150}=\frac{1}{3}\)(đpcm)

TÍNH HỢP LÝ:

B=\(\frac{5}{13}+\frac{-5}{7}-\frac{20}{41}+\frac{8}{13}+\frac{-21}{41}=\left(\frac{5}{13}+\frac{8}{13}\right)+\left(\frac{-21}{41}-\frac{20}{41}\right)+\frac{-5}{7}=1+\left(-1\right)+\frac{-5}{7}=0+\frac{-5}{7}=\frac{-5}{7}\)

28 tháng 4 2015

Ta thấy 1/101>1/150 ; 1/102>1/150 ; .... ; 1/149>1/150 ; 1/150=1/150

suy ra 1/101+1/102+1/103+.....+1/149+1/150>50.1/150

1/101+1/102+1/103+.....+1/148+1/150>1/3

7 tháng 1 2016

\(S=\frac{1}{2}.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{99.101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)

\(=\frac{1}{2}.\frac{100}{101}=\frac{50}{101}\)

=> 2S + 1/101 = \(2.\frac{50}{101}+\frac{1}{101}=\frac{100}{101}+\frac{1}{101}=\frac{101}{101}=1\)

29 tháng 4 2015

Ta thấy tổng trên có 50 số hạng .

Ta có:

1/101>1/150

1/102>1/150

...

1/149>1/150

1/150=1/150

=>1/101+1/102+...+1/149+1/150>1/150+1/150+...+1/150

                                                 ---50 số hạng 1/150-------

=>1/101+1/102+...+1/149+1/150>1/150.50

=>1/101+1/102+...+1/149+1/150>50/150

=>1/101+1/102+...+1/149+1/150>1/3

29 tháng 4 2015

em lạy chị Nguyễn Trà My cho em **** đi mà

2 tháng 4 2016

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

2 tháng 4 2016

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

15 tháng 3 2015

Đặt A=1/101+1/102+1/103+...+1/300

vì 1/101>1/102>1/103>...>1/300

=>(1/101+1/102+1/103+...+1/200)+(1/201+1/202+1/103+...+1/300) > (1/200+1/200+1/200+...+1/200)+(1/300+1/300+1/300+...+1/300) (mỗi ngoặc tên có tất cả là 100 phân số/1 ngoặc nhé!) 

=>1/101+1/102+1/103+...+1/300 > (1/200).100 + (1/300).100

=> A > 1/2+1/3

=> A > 5/6 

Mà 5/6>2/3

=> A > 2/3

Vậy 1/101+1/102+1/103+...+1/300 >2/3

31 tháng 3 2015

Vì : 1/101 > 1/300 ;  1/102 > 1/300 .... ; 1/299 >1/300 ;    Do 1/101.....1/300 có 200 số 

=>1/101+1/102+....+1/299+1/300 > 1/300 x 200

                                                 >  2/3

                                                

25 tháng 6 2016

\(\frac{1}{101}+\frac{1}{102}+...+\frac{1}{200}< \frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}\)

                                                            100 phân số 1/100

                                                \(< 100.\frac{1}{100}\)

                                                \(< 1\)

=> đpcm