Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=2+2^2+2^3+2^4+...+2^7+2^8+2^9+2^{10}\)
\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(A=1.\left(2+2^2\right)+2^2\left(2+2^2\right)+...+2^8.\left(2+2^2\right)\)
\(A=1.6+2^2.6+...+2^8.6\)
\(A=6\left(1+2^2+...+2^8\right)\)
Mà \(6⋮3\Rightarrow6.\left(1+2^2+...+2^8\right)\)
\(\Rightarrow A⋮3\)
NHỚ **** nhé!!!
A = ( 2 + 2^2 ) + ( 2 ^ 3 + 2 ^ 4 ) + ( 2 ^ 5 + 2 ^ 6 ) + .......+ ( 2 ^ 9 + 2 ^ 10 )
= ( 2 .1 + 2 .2 ) + ( 2 ^ 3 . 1 + 2 ^ 3 . 2 ) + ........+ ( 2 ^ 9 . 1 + 2 ^ 9 . 2 )
= 2 . ( 1 + 2 ) + 2 ^ 3 . ( 1 + 2 ) + .........+ 2 ^ 9 . ( 1 + 2 )
= 2 . 3 + 2 ^ 3 . 3 + ....... + 2 ^ 9 . 3
= 3 . ( 2 + 2 ^ 3 + ..... + 2 ^ 9 ) chia hết cho 3
\(\Rightarrow\) A chia hêt cho 3
Vì p là số nguyên tố lớn hơn 3 nên p ko chia hết cho 3
=> p^2 chia 3 dư 1
=> p62-1 chia hết cho 3
ĐPCM
ai tk mik mik lại (nhớ thông báo cho mik để mik nha)
34.2017 = 17.2.2017 chia hết cho 17 và 68 chia hết cho 17 => 34.2017 + 68 chia hết cho 17 (đpcm)
2016.2017 = 9.224.2017 chia hết cho 9 và 34 = 81 chia hết cho 9 và 162 : 9 => 2016.2017 + 34 + 162 chia hết cho 9 (đpcm)
1045.2002 + 60 không chia hét cho 15 nhé.
1540.2005 = 110.14.2005 chia hết cho 14 và 42 chia hết cho 14 => 1540.2005 + 42 chia hết cho 14 (đpcm)
a;
A = 109 + 108 + 107
A = 107.(102 + 10 + 1)
A = 106.2.5.(100 + 10 + 1)
A = 106.2.5.111
A = 106.2.555 ⋮ 555 (đpcm)
b;
B = 817 - 279 - 919
B = 914 - 39.99 - 919
B = 914 - 3.38.99 - 919
B = 914 - 3.94.99 - 919
B = 914 - 3.913 - 919
B = 913.(9 - 3 - 96)
B = 913.(9 - 3 - \(\overline{..1}\))
B = 913.(6 - \(\overline{..1}\))
B = 913.\(\overline{..5}\)
B ⋮ 9; B ⋮ 5
B \(\in\) BC(9; 5) = 9.5 = 45
B ⋮ 45 (đpcm)
Ta có : \(n\left(n^2+1\right)\left(n^2+4\right)=n\left(n^2-4+5\right)\left(n^2-1+5\right)=\left[n\left(n^2-4\right)+5n\right]\left[\left(n^2-1\right)+5\right]=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4\right)+5n\left(n^2+4\right)\)
\(=n\left(n^2-4\right)\left(n^2-1\right)+5n\left(n^2-4+n^2+4\right)=\left(n-2\right).\left(n-1\right).n.\left(n+1\right)\left(n+2\right)+10n^3\)
Vì (n-2)(n-1).n.(n+1)(n+2) là tích của 5 số tự nhiên liên tiếp nên chia hết cho 5
\(10n^3\) có chứa thừa số 5 nên chia hết cho 5
Do đó ta có điều phải chứng minh.
102017-1=100...000 (2011 c/s 0) -1=99....999 (2010 c/s 9)=9.111...111(2010 c/s 1) chia hết cho 9
Vậy 102017-1 chia hết cho 9 (đpcm)