K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2021

\(n^2>n^2-n=n\left(n-1\right)\Rightarrow\dfrac{1}{n^2}< \dfrac{1}{n\left(n-1\right)}\Rightarrow\dfrac{1}{n^2}< \dfrac{1}{n-1}-\dfrac{1}{n}\)

22 tháng 7 2018

N = \(\dfrac{1}{10^2}+\dfrac{1}{11^2}+\dfrac{1}{12^2}+...+\dfrac{1}{n^2}\)

= \(\dfrac{1}{10.10}+\dfrac{1}{11.11}+\dfrac{1}{12.12}+...+\dfrac{1}{n.n}\)

=> N < \(\dfrac{1}{9.10}+\dfrac{1}{10.11}+\dfrac{1}{11.12}+...+\dfrac{1}{\left(n-1\right).n}\)

=> N < \(\dfrac{1}{9}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{12}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=>N< \dfrac{1}{9}-\dfrac{1}{n}\)

=> N < \(\dfrac{1}{9}\)

Vậy N < \(\dfrac{1}{9}\)

22 tháng 3 2019

???

28 tháng 3 2017

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{\left(n-1\right)n}\)

\(=\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n-1}-\dfrac{1}{n}\)

\(=1-\dfrac{1}{n}< 1\)

\(\Rightarrow\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{n^2}< 1\left(đpcm\right)\)

2 tháng 5 2017

\(S=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4-1}{1.4}+\dfrac{7-4}{4.7}+\dfrac{10-7}{7.10}+...+\dfrac{\left(n+3\right)-n}{n\left(n+3\right)}\)

\(\Rightarrow S=\dfrac{4}{1.4}-\dfrac{1}{1.4}+\dfrac{7}{4.7}-\dfrac{4}{4.7}+\dfrac{10}{7.10}-\dfrac{7}{7.10}+...+\dfrac{n+3}{n\left(n+3\right)}-\dfrac{n}{n\left(n+3\right)}\)

\(\Rightarrow S=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{n}-\dfrac{1}{n+3}\)

\(\Rightarrow S=1-\dfrac{1}{n+3}< 1\Rightarrow S< 1\)

Vậy S < 1

Bài 3: 

Để A là số nguyên thì \(n-2+5⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{3;1;7;-3\right\}\)

23 tháng 6 2018

a, Ta có :

\(M=\dfrac{1}{1\cdot2}+\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{1\cdot2\cdot3\cdot4}+...+\dfrac{1}{1\cdot2\cdot3\cdot...\cdot100}\\ < \dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{99\cdot100}\\ =1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-...+\dfrac{1}{99}-\dfrac{1}{100}\\ =1-\dfrac{1}{100}=\dfrac{99}{100}< 1\\ \Rightarrow M< 1\\ \RightarrowĐpcm\)

13 tháng 3 2017

\(A=\dfrac{1}{2}.\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{1}{4}+...+\dfrac{1}{8}.\dfrac{1}{9}\)

\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{8.9}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{8}-\dfrac{1}{9}\)

\(=\dfrac{1}{2}-\dfrac{1}{9}\)

\(=\dfrac{7}{18}\)

\(B=\dfrac{1}{20}+\dfrac{1}{30}+...+\dfrac{1}{110}\)

\(=\dfrac{1}{4.5}+\dfrac{1}{5.6}+...+\dfrac{1}{10.11}\)

\(=\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+...+\dfrac{1}{10}-\dfrac{1}{11}\)

\(=\dfrac{1}{4}-\dfrac{1}{11}\)

\(=\dfrac{7}{44}\)

14 tháng 3 2017

Linh tinh

29 tháng 4 2017

a) Để A là phân số thì 5 không chia hết cho n-1 hay n-1 không phải Ư(5) mà Ư(5)={-5;-1;1;5}

Ta có bảng sau:

\(n-1\ne\) -5 -1 1 5
\(n\ne\) -4 0 2 6

Vậy n\(\ne\left\{-4;0;2;6\right\}\)thì A là phân số

n=0 => A=\(\dfrac{5}{0-1}=-5\)

n=10 => A=\(\dfrac{5}{10-1}=\dfrac{5}{9}\)

n=-2 => A=\(\dfrac{5}{-2-1}=-\dfrac{5}{3}\)

Để A là số nguyên =>5 chia hết cho n-1 <=>n-1 là Ư(5)

Từ bảng trên => n={-4;0;2;6} thì A nguyên

b) Do n là Số tự nhiên => n và n+1 là 2 số tự nhiên liên tiếp

=>n và n+1 nguyên tố cùng nhau

=>phân số \(\dfrac{n}{n+1}\)tối giản(dpcm)

c)\(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{49\cdot50}=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}=1-\dfrac{1}{50}< 1\left(đpcm\right)\)

29 tháng 4 2017

c) 1/1.2 + 1/2.3 + 1/3.4 + .....+ 1/49.50

= 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + 1/4 - 1/5 + ......+ 1/49 - 1/50

tới bước đây mik làm gọn lại chút nha

= 1/1 - 1/50

=49/50

Suy ra : 49/50 <1 ( điều phải chứng minh )

28 tháng 3 2017

a) M =1+3+32+33+......+3118+3119
M = ( 1+3+32 ) +...+ ( 3117 + 3118+3119 )
M = 1. ( 1+3+32 ) + ... + 3117 . ( 3117 + 3118+3119 )
M = ( 1+3+32 ) .( 1 + ... + 3117 )
M = 13 . ( 1 + ... + 3117 ) \(⋮\) 13 (đpcm )

28 tháng 3 2017

b) Ta có:
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...
\(\dfrac{1}{2009^2}< \dfrac{1}{2008.2009}\)
\(\dfrac{1}{2010^2}< \dfrac{1}{2009.2010}\)

=> \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < \(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\) (1)
Biến đổi vế trái:
\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{2008.2009}+\dfrac{1}{2009.2010}\)

= \(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{2008}-\dfrac{1}{2009}+\dfrac{1}{2009}-\dfrac{1}{2010}\)
= \(1-\dfrac{1}{2010}\)
= \(\dfrac{2009}{2010}< 1\) (2)

Từ (1) và (2), suy ra :
\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2009^2}+\dfrac{1}{2010^2}\) < 1 hay:
N < 1

13 tháng 4 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

1 tháng 5 2018

a. Ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6

b. Theo kết quả câu a,ta có:

Giải sách bài tập Toán 6 | Giải bài tập Sách bài tập Toán 6