Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b)mn+nm=10m+n+10n+m
=11m+11n
11(m+n)\(⋮\)11
=>mn+nm \(⋮\)11
k mik nha
b)
Ta có : aaaaaa = a . 111 111
= a . 7 . 15873 chia hết cho 7 ( vì 7 chia hết cho bảy, ta áp dụng tính chất a chia hết cho m thì a.b.c đều chia hết cho m)
Vậy aaaaaa chia hết cho 7
c)
Ta có abcabc= abc . 1001
= abc. 91 . 11 chia hết cho 11 và 91
Vậy abcabc chia hết cho 11 và 91
e)
Ta có ababab= ab . 10101
= ab . 1443 . 7 chia hết cho 7
mk chỉ bít làm vài câu thôi hi vọng sẽ giúp đc bạn phần nào
kb nha
CHÚC BẠN HỌC TỐT!
Chứng tỏ rằng : abcabc chia hết cho 11, 13, 7.
Giải
Ta có: abcabc = abc000 + abc
= abc x 1000 + abc
= abc x ( 1000 + 1)
= abc x 1001
= abc x 7 x 11 x 13
Vậy abcabc là tích của abc với 7; 11; 13 => abcabc chia hết cho 7; 11; 13.
nha bạn :3
a/ Ta có: abcabc=abc.1001=abc.7.11.13 luôn chia hết cho 7;11;13
b/ Mình chưa bt làm
Chúc bạn học tốt!
1. Chứng tỏ rằng: ab + ba chia hết cho 11:
Ta có: ab+ba=10a+b+10b+a=11a+11b=11(a+b)
Vì \(11\left(a+b\right)⋮11\)
\(\Rightarrow ab+ba⋮11\)
Chứng tỏ rằng: ab - ba chia hết cho 9
Ta có: ab-ba=10a+b-10b-a=9a-9b=9(a-b)
vì \(9\left(a-b\right)⋮9\)
\(\Rightarrow ab-ba⋮9\)
1. a) Ta có : ab + ba = (a0 + b) + (b0 + a)
= (10a + b) + (10b + a)
= 10a + b + 10b + a
= (10a + a) + (b + 10b)
= 11a + 11b
= 11(a + b) \(⋮\)11
=> ab + ba \(⋮\)11 (ĐPCM)
b) Ta có : ab - ba = (a0 + b) - (b0 + a)
= (10a + b) - (10b + a)
= 10a + b - 10b - a
= (10a - a) - (10b - b)
= 9a - 9b
= 9(a - b) \(⋮\)9
=> ab + ba \(⋮\)9 (ĐPCM)
2) Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1) \(⋮\)3 (ĐPCM)
3)
Gọi 3 số tự nhiên liên tiếp là a ; a + 1 ; a + 2
Khi đó a + a + 1 + a + 2
= 3a + 3
= 3(a + 1)
=> Tổng của 3 số liên không chia hết cho 4 (ĐPCM)
a) Ta có: ab - ba = 10a +b - 10b - a = (10a - a) - (10b - b)
= a(10 - 1) - b(10 - 1) = 9a - 9b = 9(a - b)
\(\Rightarrow\)(ab - ba ) \(⋮\)9 (vì có chứa thừa số 9)
b) Ta có: abcd = 100ab + cd = 99ab + ab + cd
Vì 99ab \(⋮\)11; (ab + cd) \(⋮\)11
\(\Rightarrow\)(99ab + ab + cd) chia hết cho 11
\(\Rightarrow\)(ab + cd) chia hết cho 11 thì abcd chia hết cho 11
c) Ta có: abcdeg = 1000abc + deg = 1001abc + (abc - deg)
Vì 1001abc chia hết cho 13
(abc - deg) chia hết cho 13
\(\Rightarrow\)abcdeg chia hết cho 13
\(\Rightarrow\)(abc - deg) chia hết cho 13 thì abcdeg chia hết cho 13.
a) Vì\(\overline{abc}-\overline{deg}⋮13\Rightarrow\overline{abc}-\overline{deg}=13.k\Rightarrow\overline{abc}=\overline{deg}+13.k\left(k\in N\right)\)
Do vậy : \(\overline{abcdeg}=1000.\overline{abc}+\overline{deg}=1000.\left(\overline{deg}+13.k\right)+\overline{deg}=\left(1001.\overline{deg}+100.13.k\right)⋮13\)
b) \(\overline{abc}=100.a+10.b+c=98.a+7.b+\left(2a+3b+c\right)\)
Vậy nếu \(\overline{abc⋮7}\) thì (2a + 3b + c ) chia hết cho 7
Bạn hình như ghi sót đề
abcabc chứ ko phải là : abcab
abcabc=abc.1001
ta có 1001 chia hết cho:91;7;13 nên
abcabc chia hết cho 91;7;13
mn+nm=m.10+n+10.n+m
m.(10+1)+n.(10+1)
=m.11+n.11
=(m+n).11
suy ra mn+nm chia hết cho 11