Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1;a,942^{60}-351^{37}\)
\(=\left(942^4\right)^{15}-\left(....1\right)\)
\(=\left(....6\right)^{15}-\left(...1\right)\)
\(=\left(...6\right)-\left(...1\right)=\left(....5\right)⋮5\)
\(b,99^5-98^4+97^3-96^2\)
\(=\left(...9\right)-\left(...6\right)+\left(...3\right)-\left(...6\right)\)
\(=\left(...6\right)-\left(...6\right)=\left(...0\right)⋮2;5\)
\(2;5n-n=4n⋮4\)
73=343 đồng dư với 1(mod 9)
=>(73)6=718 đồng dư với 1(mod 9)
=>718=9k+1
=>B=9k+1+18.3-1=9k+18.3=9(k+2.3) chia hết cho 9
=>đpcm
\(2+2^2+2^3+2^4+...+2^{99}+2^{100}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)\)
\(=2.3+2^3.3+...+2^{99}.3\)
\(=3\left(2+2^3+...+2^{99}\right)\)chia hết cho 3 (Đpcm)
Đặt A = 2 + 22 + 23 + 24 + ... + 299 + 2100
Ta có:
A = 2 + 22 + 23 + 24 + ... + 299 + 2100
A = (2 + 22) + (23 + 24) + ... + (299 + 2100)
A = 2.(1 + 2) + 23.(1 + 2) + ... + 299.(1 + 2)
A = 2.3 + 23.3 + ... + 299.3
A = (2 + 23 + ... + 299) . 3
Vì (2 + 23 + ... + 299) . 3 chia hết cho 3 nên 2 + 22 + 23 + 24 + ... + 299 + 2100 chia hết cho 3 (đpcm)
M = 2 + 22 + 23 + ... + 220
M = ( 2 + 22 + 23 + 24 ) + ... + ( 217 + 218 + 219 + 220 )
M = 5 ( 1 + 4 + 10 ) + ... + 5 ( 1 + 4 + 10 )
M chia hết cho 5 ( đpcm )